精英家教网 > 高中数学 > 题目详情
函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,为了得到y=sin2x的图象,只需将f(x)的图象(  )
A、向右平移
π
3
个单位
B、向右平移
π
6
个单位
C、向左平移
π
3
个单位
D、向左平移
π
6
个单位
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的图像与性质
分析:由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的f(x)的解析式.再根据函数y=Asin(ωx+φ)的图象的变换规律,可得结论.
解答: 解:由函数f(x)=Asin(ωx+φ),(A>0,ω>0,|ϕ|<
π
2
)
的图象可得
A=1,T=
ω
=2[
π
3
-(-
π
6
)]
=π,∴ω=2.
再由五点法作图可得 2×(-
π
6
)
+φ=0,∴φ=
π
3

故函数的f(x)的解析式为 f(x)=sin(2x+
π
3
)=sin2(x+
π
6
).
故把f(x)=sin2(x+
π
6
)的图象向右平移
π
6
个单位长度,可得g(x)=sin2x的图象,
故选:B.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象的变换规律,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P在
x2
25
-
y2
144
=1上,若|PF1|=16,则|PF2|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
a2
-
y2
9
=1
上一点,双曲线的一条渐近线方程为3x-2y=0,F1,F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下判断正确的是(  )
A、函数y=f(x)为R上的可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
B、命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C、命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题
D、“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-x+1,x<1
1
x
  ,x>1
的值域是(  )
A、(0,+∞)
B、(0,1)
C、[
3
4
,1)
D、[
3
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-2≤x≤2},B={x|0<x<1},则有(  )
A、A>BB、A?B
C、B?AD、A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为(  )
A、f(1)>f(-10)
B、f(1)<f(-10)
C、f(1)=f(-10)
D、f(1)和f(-10)关系不定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个从A→B的”闯关”游戏.规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于2n,则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},Tn为其前n项和,且Tn+
1
2
an=1.
(1)求a1,a2,a3,并猜想{an}的通项公式;
(2)用数学归纳法证明.

查看答案和解析>>

同步练习册答案