精英家教网 > 高中数学 > 题目详情
20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$),四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,设A(x1,y1),B(x2,y2),满足4y1y2=x1x2,试证:kAB+kBC的值为定值,并求出此定值.

分析 运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;设A(x1,y1),B(x2,y2),C(-x1,-y1),不妨设x1>0,x2>0.设kAC=k>0,将直线AC和直线BD方程代入椭圆方程,解得A,B的坐标,可得C的坐标,再由斜率公式,计算即可得证.

解答 证明:由题意可得e=$\frac{\sqrt{3}}{2}$,即$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2-b2=c2
椭圆过点($\sqrt{3}$,$\frac{1}{2}$),可得$\frac{3}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1,
解得a=2,b=1.
即有椭圆方程为$\frac{{x}^{2}}{4}$+y2=1.
设A(x1,y1),B(x2,y2),C(-x1,-y1),
不妨设x1>0,x2>0.
设kAC=k>0,∵kAC•kBD=$\frac{{y}_{1}}{{x}_{1}}$•$\frac{{y}_{2}}{{x}_{2}}$=$\frac{1}{4}$,
∴kBD=$\frac{1}{4k}$.
可得直线AC、BD的方程分别为y=kx,y=$\frac{1}{4k}$x.
联立$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$和$\left\{\begin{array}{l}{y=\frac{1}{4k}x}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
解得x1=$\frac{2}{\sqrt{1+4{k}^{2}}}$,x2=$\frac{4k}{\sqrt{1+4{k}^{2}}}$.
即有y1=$\frac{2k}{\sqrt{1+4{k}^{2}}}$,y2=$\frac{1}{\sqrt{1+4{k}^{2}}}$.
kAB+kBC=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$+$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{1-2k}{4k-2}$+$\frac{1+2k}{4k+2}$=-$\frac{1}{2}$+$\frac{1}{2}$=0,
则kAB+kBC的值为定值,且为0.

点评 熟练掌握椭圆的标准方程及其性质、直线与椭圆相交问题转化为联立方程得到交点、运用直线的斜率公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在锐角△ABC中,AB=2,AC=$\sqrt{7}$,E是BC边上的点.
(1)若AE平分角∠BAC,求$\frac{EC}{BE}$的值;
(2)若AE=$\sqrt{6}$,∠AEC=135°,求角B及BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°
(1)求直线AD与平面BCD所成角的大小.
(2)求二面角A-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.椭圆D:$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$与圆M:x2+(y-m)2=9(m∈R),双曲线G与椭圆D有相同的焦点,它的两条渐近线恰好与圆M相切,当m=5时,求双曲线G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,E,F分别为AB,BC的中点.
(1)求点D到平面PEF的距离;
(2)求直线AC到平面PEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{{x}^{2}}{2}+{y}^{2}=1$,过圆x2+y2=1上一点做圆的切线,交椭圆于A,B两点,F为椭圆的右焦点,求△ABF的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面ABCD为菱形,PA⊥平面ABCD,∠BAD=120°,E,F分别为BC,PC的中点.
(1)证明:AE⊥PD
(2)若PA=AB=4,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线y=-x+1与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相交于A,B两点,且以AB为直径的圆经过点O(其中O为坐标原点)当椭圆C的离心率e$∈[\frac{1}{2},\frac{\sqrt{3}}{2}]$时椭圆C的长轴长的最大值是(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2lnx+$\frac{1}{2}$ax2-(a+2)x(a≠0).
(1)求f(x)的单调递增区间;
(2)当0<a<2时,求函数f(x)在区间[1,2]上的值域.

查看答案和解析>>

同步练习册答案