9£®ÈôÖ±Ïßy=-x+1ÓëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÏཻÓÚA£¬BÁ½µã£¬ÇÒÒÔABΪֱ¾¶µÄÔ²¾­¹ýµãO£¨ÆäÖÐOÎª×ø±êÔ­µã£©µ±ÍÖÔ²CµÄÀëÐÄÂÊe$¡Ê[\frac{1}{2}£¬\frac{\sqrt{3}}{2}]$ʱÍÖÔ²CµÄ³¤Ö᳤µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\sqrt{10}$B£®$\frac{\sqrt{10}}{2}$C£®3D£®$\frac{3}{2}$

·ÖÎö Éè³öµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$µÃ³öx1x2+y1y2=0£»ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=-x+1}\end{array}\right.$£¬ÏûÈ¥yµÃ³ö£¨a2+b2£©x2-2a2x+a2£¨1-b2£©=0£»ÀûÓøùÓëϵÊýµÄ¹ØÏµµÃx1+x2Óëx1x2£¬Çó³öa¡¢b¡¢cÓëeµÄ¹ØÏµ£¬ÔÙÓÉeµÄ·¶Î§Çó³öaµÄȡֵ·¶Î§£¬´Ó¶øµÃ³ö³¤Ö᳤µÄ×î´óÖµ£®

½â´ð ½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
¡ß$\overrightarrow{OA}$¡Í$\overrightarrow{OB}$£¬¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=0£¬
¼´x1x2+y1y2=0£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\\{y=-x+1}\end{array}\right.$£¬ÏûÈ¥yµÃ£¨a2+b2£©x2-2a2x+a2£¨1-b2£©=0£¬
ÓÉ¡÷=£¨-2a2£©2-4a2£¨a2+b2£©£¨1-b2£©£¾0£¬ÕûÀíµÃa2+b2£¾1£»
¡ßx1+x2=$\frac{{2a}^{2}}{{a}^{2}{+b}^{2}}$£¬x1x2=$\frac{{a}^{2}£¨1{-b}^{2}£©}{{a}^{2}{+b}^{2}}$£¬
¡ày1y2=£¨-x1+1£©£¨-x2+1£©=x1x2-£¨x1+x2£©+1£¬
¡àx1x2+y1y2=0£¬µÃ£º2x1x2-£¨x1+x2£©+1=0£¬
¡à$\frac{{2a}^{2}£¨1{-b}^{2}£©}{{a}^{2}{+b}^{2}}$-$\frac{{2a}^{2}}{{a}^{2}{+b}^{2}}$+1=0£¬
ÕûÀíµÃ£ºa2+b2-2a2b2=0£®
¡àb2=a2-c2=a2-a2e2£¬´úÈëÉÏʽµÃ
2a2=1+$\frac{1}{1{-e}^{2}}$£¬¡àa2=$\frac{1}{2}$£¨1+$\frac{1}{1{-e}^{2}}$£©£¬
¡ß$\frac{1}{2}$¡Üe¡Ü$\frac{\sqrt{3}}{2}$£¬
¡à$\frac{1}{4}$¡Üe2¡Ü$\frac{3}{4}$£¬¡à$\frac{1}{4}$¡Ü1-e2¡Ü$\frac{3}{4}$£¬
¡à$\frac{4}{3}$¡Ü$\frac{1}{1{-e}^{2}}$¡Ü4£¬¡à$\frac{7}{3}$¡Ü1+$\frac{1}{1{-e}^{2}}$¡Ü5£¬
¡à$\frac{7}{6}$¡Üa2¡Ü$\frac{5}{2}$ÊʺÏÌõ¼þa2+b2£¾1£®
Óɴ˵Ã$\frac{\sqrt{42}}{6}$¡Üa¡Ü$\frac{\sqrt{10}}{2}$£¬¡à$\frac{\sqrt{42}}{3}$¡Ü2a¡Ü$\sqrt{10}$£¬
¹Ê³¤Ö᳤µÄ×î´óֵΪ$\sqrt{10}$£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÍÖÔ²±ê×¼·½³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÆ½ÃæÏòÁ¿ÓëÔ²µÄÓ¦ÓÃÎÊÌ⣬¿¼²éÁ˼ÆËãÄÜÁ¦ÓëÂß¼­ÍÆÀíÄÜÁ¦£¬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Éèa¡ÊR£¬Èôº¯Êýy=eax+3x£¬x¡ÊRÓдóÓÚÁãµÄ¼«Öµµã£¬Ôò£¨¡¡¡¡£©
A£®$a£¼-\frac{1}{3}$B£®$a£¾-\frac{1}{3}$C£®a£¼-3D£®a£¾-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýµã£¨$\sqrt{3}$£¬$\frac{1}{2}$£©£¬ËıßÐÎABCDµÄ¶¥µãÔÚÍÖÔ²ÉÏ£¬ÇÒ¶Ô½ÇÏßAC¡¢BD¹ýÔ­µãO£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Âú×ã4y1y2=x1x2£¬ÊÔÖ¤£ºkAB+kBCµÄֵΪ¶¨Öµ£¬²¢Çó³ö´Ë¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®º¯Êýf£¨x£©=x3-x2-x+m£¬£¨m¡ÊR£©
£¨1£©Çóf£¨x£©µÄ¼«Öµ£»
£¨2£©µ±mÔÚʲô·¶Î§ÄÚȡֵʱ£¬ÇúÏßy=f£¨x£©ÓëÖ±Ïßy=1ÓÐÈý¸ö²»Í¬µÄ½»µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ÔÚËÄÀâ×¶ P-A BCDÖУ¬µ×Ãæ A BCDΪÕý·½ÐΣ¬Æ½Ãæ P AD¡Íµ×Ãæ A BCD£¬µã EÔÚÀâ PDÉÏ£¬ÇÒ A E¡ÍPD£®
£¨¢ñ£©ÇóÖ¤£ºÆ½Ãæ A B E¡ÍÆ½Ãæ PCD£»
£¨¢ò£©ÒÑÖª PDÓëµ×Ãæ A BCDËù³É½ÇΪ30¡ã£¬Çó¶þÃæ½Ç E-AC-DµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬AA1=AB=2£¬DΪCC1µÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºBC1¡ÍÆ½ÃæB1CD£»
£¨¢ò£©Çó¶þÃæ½ÇB-B1D-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬¡ÏABC=90¡ã£¬AC=AA1=2$\sqrt{2}$£¬AB=2£¬MΪBB1µÄÖе㣬ÔòB1ÓëÆ½ÃæACMµÄ¾àÀëΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýy=f£¨x£©£¬¶ÔÈÎÒâʵÊýx£¬yÂú×㣺f£¨x+y£©=f£¨x£©+f£¨y£©-3£¬ÇÒf£¨$\frac{1}{2}$£©=4£®
£¨¢ñ£©µ±n¡ÊN*ʱ£¬Çóf£¨n£©µÄ±í´ïʽ£®
£¨¢ò£©Èôb1=1£¬bn+1=$\frac{{b}_{n}}{1+{b}_{n}•f£¨n-1£©}$£¨n¡ÊN*£©£¬Çóbn£®
£¨¢ó£©ÔÚbnÂú×㣨¢ò£©µÄǰÌáÏ£¬¼°cn=$\root{3}{b{\;}_{n}}$£¨n¡ÊN*£©£¬ÊÔÖ¤c1+c2+¡­+c2011£¼89£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=ex£®
£¨1£©Ö¤Ã÷£ºµ±0¡Üx£¼1ʱ£¬ex¡Ü$\frac{1}{1-x}$£»
£¨2£©Èôº¯Êýh£¨x£©=|1-f£¨-x£©|+af£¨x£©-3£¨a£¾0Êdz£Êý£©ÔÚÇø¼ä[-ln3£¬ln3]ÉÏÓÐÁãµã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸