精英家教网 > 高中数学 > 题目详情
如图,已知:|AC|=|BC|=4,∠ACB=90°,M为BC的中点,D为以AC为直径的圆上一动点,则
AM
DC
的最大值是
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:建立适当的直角坐标系,求出相关点的坐标,求出
AM
DC
,然后求解
AM
DC
的表达式,求出最大值即可.
解答: 解:建立如图所示的直角坐标系,则A(-2,0),C
(2,0),O(0,0),M(2,-2),设D(2cosα,2sinα).
AM
=(4,-2),
DC
=(2-2cosα,-2sinα).
AM
DC
=4×(2-2cosα)+4sinα
=8-8cosα+4sinα
=8+4
5
sin(α-θ),其中tanθ=2.
sin(α-θ)∈[-1,1],
AM
DC
的最大值是8+4
5

故答案为:8+4
5
点评:本题给出直角三角形内的动点,求向量数量的最大值,着重考查了解三角形和平面向量的数量积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=2,nan+1=Sn+n(n+1) (n∈N*)
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面为正方形,侧面PAD⊥底面ABCD.△PAD为等腰直角三角形,且PA⊥AD. E,F分别为底边AB和侧棱PC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:EF⊥平面PCD;
(Ⅲ)求二面角E-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式an=n2-(6+2λ)n+2014,若a6或a7为数列{an}的最小项,则实数λ的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是直线3x+4y+8=0上的动点,C是圆x2+y2-2x-2y+1=0的圆心,那么|PC|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①若命题p:?x0∈R,tanx0=2;命题q:?x∈R,x2-x+
1
2
>0.则命题“p∧(¬q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
a
b
=-3;
③“设a、b∈R,若ab≥2,则a2+b2>4”的否命题为:“设a、b∈R,若ab<2,则a2+b2≤4”.
其中正确结论的序号为
 
.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D是BC的中点,AD=8,BC=20,则
AB
AC
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的导函数f′(x)的图象是如图所示的一条直线l,l与x轴交点坐标为(1,0),若|a-1|<|b-1|,则f(a)与f(b)的大小关系为(  )
A、f(a)>f(b)
B、f(a)<f(b)
C、f(a)=f(b)
D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

定义函数fk(x)=
alnx
xk
为f(x)的k阶函数.
(1)求一阶函数f1(x)的单调区间;
(2)当a>0时,讨论方程f2(x)=1的解的个数;
(3)求证:3lnx≤x3ex-1

查看答案和解析>>

同步练习册答案