精英家教网 > 高中数学 > 题目详情
16.已知抛物线C:y=2016x2,则它的准线方程是y=-$\frac{1}{8064}$.

分析 抛物线方程化为标准方程,求出p,即可得到抛物线的准线方程.

解答 解:抛物线C:y=2016x2,可化为x2=$\frac{1}{2016}$y,
∴2p=$\frac{1}{2016}$,
∴$\frac{p}{2}$=$\frac{1}{8064}$,
∴抛物线的准线方程为y=-$\frac{1}{8064}$.
故答案为:y=-$\frac{1}{8064}$.

点评 本题考查抛物线的几何性质,考查学生的计算能力,将抛物线方程化为标准方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,圆C:(x-1)2+y2=5和y轴的负半轴相交于A点,点B在圆C上(不同于点A),M为AB的中点,且|OA|=|OM|,则点M的坐标为$(\frac{8}{5},-\frac{6}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=-x3+2ax在(0,1]上是单调递增函数,则实数a的取值范围是(  )
A.(-∞,$\frac{3}{2}$)B.[$\frac{3}{2}$,+∞)C.($\frac{3}{2}$,+∞)D.(-$\frac{3}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$y=3sinx+\sqrt{3}cosx$($x∈[0,\frac{π}{2}]$) 的单调递增区间是[0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的离心率为$\frac{{2\sqrt{3}}}{3}$,若抛物线C:y2=2px(p>0)的焦点F到双曲线的渐近线的距离为1,
(1)求抛物线C的方程;
(2)过点F的直线l交抛物线C于A、B两点(点A在x轴下方),若$\overline{AF}=\frac{1}{3}\overline{FB}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sin(π+θ)=$\frac{1}{2}$,求$\frac{cos(3π+θ)}{cos[cos(π-θ)-1]}$+$\frac{cos(θ-2π)}{sin(θ-\frac{7π}{2})cos(π-θ)-sin(\frac{3π}{2}+θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是定义在R上的增函数.
(1)a∈R,试比较f(a2)与f(a-1)的大小,并说明理由;
(2)若对任意的x∈R,不等式f(ax2)<f(ax+1)恒成立.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合$M=\{x|x=m+\frac{1}{6},m∈N\}$,$N=\{x|x=\frac{n}{2}-\frac{1}{3},n∈N\}$,则M,N的关系为(  )
A.M=NB.N?MC.M?ND.N⊆M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=alnx+blgx+2,且$f({\frac{1}{2009}})=4$,则f(2009)的值为0.

查看答案和解析>>

同步练习册答案