精英家教网 > 高中数学 > 题目详情
17.若x>0,则$4x+\frac{1}{x}$的最小值为4.

分析 因为x>0,直接利用基本不等式求出其最小值.

解答 解:若x>0,则4x+$\frac{1}{x}$≥2$\sqrt{4x•\frac{1}{x}}$=4,
当且仅当4x=$\frac{1}{x}$,x=$\frac{1}{2}$时取得.
故答案为:4.

点评 本题主要考查基本不等式的应用,注意基本不等式的使用条件,并注意检验等号成立的条件,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设x,y∈R,a>1,b>1,若ax=by=3,a+2b=6$\sqrt{2}$,则$\frac{1}{x}$+$\frac{1}{y}$的最大值是(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{-i}{3+i}$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.不等式|x-$\frac{1}{4}$|≤$\frac{1}{12}$的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|2a-b|<n,求证:|b|<$\frac{5}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要得到函数y=2sin(2x+$\frac{2π}{3}$)的图象,需要将函数y=2sin2x的图象(  )
A.向左平移$\frac{2π}{3}$个单位B.向右平移$\frac{2π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,
(1)求函数的解析式;
(2)求这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$),直线的参数方程为$\left\{\begin{array}{l}{x=t-1}\\{y=2t-1}\end{array}$(t为参数),直线和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.
(Ⅰ)求圆心的极坐标;
(Ⅱ)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,已知矩形ABCD中,AB=2,BC=1,O为线段AB的中点,动点P从B出发,沿矩形ABCD的边逆时针运动,运动至A点时终止.设∠BOP=x,OP=d,将d表示为x的函数d=f(x).则下列命题中:
①f(x)有最小值1;
②f(x)有最大值$\sqrt{2}$;
③f(x)有3个极值点;
④f(x)有4个单调区间.
其中正确的是(  )
A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

同步练习册答案