精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足:①定义域为R;②对任意x∈R,都有f(x+2)=2f(x);③当x∈[-1,1]时f(x)=-|x|+1.则方程f(x)=log4|x|在区间[-7,7]内的解个数是(  )
A、10B、9C、8D、12
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:令-3≤x≤-1则-1≤x+2≤1,由f(x+2)=2f(x),求出f(x),同理求出-5≤x≤-3、-7≤x≤-5、1≤x≤3、3≤x≤5、5≤x≤7的函数f(x)的解析式,并画出图象,再画出y=log4|x|的图象,观察得出交点个数,即为方程解的个数.
解答: 解:令-3≤x≤-1则-1≤x+2≤1,
∵f(x+2)=2f(x),∴f(x)=
1
2
(1-|x+2|)(-3≤x≤-1)①
令-5≤x≤-3则-1≤x+4≤1,f(x+4)=1-|x+4|,又f(x+4)=2f(x+2)=4f(x),
∴f(x)=
1
4
(1-|x+4|)(-5≤x≤-3)②
则-7≤x≤-5时,f(x)=
1
8
(1-|x+6|)③
当1≤x≤3时,-1≤x-2≤1,f(x-2)=1-|x-2|
又f(x-2)=
1
2
f(x),即f(x)=2(1-|x-2|),
同理3≤x≤5时,
f(x)=4(1-|x-4|)④
当5≤x≤7时,f(x)=8(1-|x-6|)⑤
如图所示f(x)的图象,
再画出y=log4|x|的图象,观察得出交点数为8,
即方程f(x)=log4|x|在区间[-7,7]内的解个数是8.
故选:C.
点评:本题考查函数的解析式的求法,函数的零点个数,以及函数的图象的画法,考查数形结合的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于x的方程2x+log23=24,则其根x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)不恒等于0,且对任意x,y∈R,满足xf(y)=yf(x),则f(x)的奇偶性为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0).若双曲线上存在点P使
sin∠PF1F2
sin∠PF2F1
=
a
c
,则该双曲线的离心率的取值范围为(  )
A、(1,
2
B、(1,2)
C、(1,
5
+1
2
D、(1,
2
+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为(  )
A、y=±3x
B、y=±2x
C、y=±(
3
+1)x
D、y=±(
3
-1)x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0),与抛物线y2=4x的准线交于A,B两点,O为坐标原点,若△ABC的面积等于1,则a=(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右两个焦点,若双曲线C上存在点P满足|PF1|:|PF2|=2:1且∠F1PF2=90°,则双曲线C的渐近线方程是(  )
A、x±2y=0
B、2x±y=0
C、5x±4y=0
D、4x±5y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象过点(2,
2
2
),试求出此函数的解析式,并写出其定义域,判断奇偶性,单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

我国高铁技术发展迅速,铁道部门计划在A,B两城市之间开通高速列车,假设列车在试运行期间,每天在8:00~9:00,9:00~10:00两个时间段内各发一趟由A城开往B城的列车(两车发车情况互不影响),A城发车时间及概率如下表所示:
发车时间8:108:308:509:109:309:50
概率
1
6
1
3
1
2
1
6
1
3
1
2
若甲、乙两位旅客打算从A城到B城,他们到达A城火车站的时间分别是周六的8:00和周日的8:20.(只考虑候车时间,不考虑其他因素)
(1)求甲、乙两人候车时间相等的概率;
(2)设乙候车所需时间为随机变量X,求ξ的分布列和数学期望E(X).

查看答案和解析>>

同步练习册答案