精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x2+3|x-a|(a>0,记f(x)在[-1,1]上的最小值为g(a).
(Ⅰ)求g(a)的表达式;
(Ⅱ)若对x∈[-1,1],恒有f(x)≤g(a)+m成立,求实数m的取值范围.

分析 (Ⅰ)运用分段的形式写出f(x),讨论①0<a≤1时,②a>1时,根据单调性,可得最小值g(a);
(Ⅱ)令h(x)=f(x)-g(a),讨论①0<a≤1时,②当a>1时,求得h(x)的最大值,即可得到m的范围.

解答 解:(Ⅰ)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+3a,x<a}\\{{x}^{2}+3x-3a,x≥a}\end{array}\right.$,
∵a>0,-1≤x≤1,
①0<a≤1时,f(x)在[-1,a]上递减,在[a,1]上递增,则g(a)=f(a)=a2
②a>1时,f(x)在[-1,$\frac{3}{2}$]递减,则g(a)=f(1)=3a-2.
则有g(a)=$\left\{\begin{array}{l}{{a}^{2},0<a≤1}\\{3a-2,a>1}\end{array}\right.$;
(Ⅱ)令h(x)=f(x)-g(a),
①0<a≤1时,g(a)=a2
当-1≤x≤a,h(x)=x2-3x+3a-a2在[-1,a]递减,
h(x)≤h(-1)=4+3a-a2≤6,
当a≤a≤1,h(x)=x2+3x-3a-a2在[a,1]上递增,
h(x)≤h(1)=4-3a-a2<4,
②当a>1时,g(a)=3a-2,h(x)=x2-3x+2≤h(-1)=6,
综上可得,h(x)=f(x)-g(a)在a>0,-1≤x≤1上 的最大值为6.
即有h(x)≤m恒成立,即m≥6.
则m的取值范围是[6,+∞).

点评 本题考查分段函数的运用,主要考查二次函数的最值的求法,运用函数的单调性和分类讨论的思想方法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=$\sqrt{x-1}$(x≥1)上,则|PQ|的最小值为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设∠EPA=α(0<α<$\frac{π}{2}$).
(1)为减少对周边区域的影响,试确定E,F的位置,使△PAE与△PFB的面积之和最小;
(2)为节省建设成本,试确定E,F的位置,使PE+PF的值最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥BC,且AB=$\sqrt{3}$,BC=4,AA1=3,M为棱AA1的中点,且AB1∩BM=P,AC1∩CM=Q.
(Ⅰ)求证:PQ∥平面BCC1B1
(Ⅱ)求多面体PQCBB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知动点A在椭圆 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上,动点B在直线 x=-2上,且满足 $\overrightarrow{OA}$⊥$\overrightarrow{OB}$(O为坐标原点),椭圆C上点 $M(\frac{{\sqrt{3}}}{2},3)$到两焦点距离之和为 4$\sqrt{3}$
(Ⅰ)求椭圆C方程.
(Ⅱ)判断直线AB与圆x2+y2=3的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若直线$\left\{\begin{array}{l}x=-1+2t\\ y=3-2t\end{array}\right.(t$为参数)与曲线$\left\{\begin{array}{l}x=4+acosθ\\ y=asinθ\end{array}\right.(θ$为参数,a>0)有且只有一个公共点,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系是C(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:x-ky-5=0与圆O:x2+y2=10交于A,B两点且$\overrightarrow{OA}•\overrightarrow{OB}$=0,则k=(  )
A.2B.±2C.±$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线l:x-y+1=0与抛物线C:x2=4y交于A,B两点,点P为抛物线C上一动点,且在直线l下方,则△PAB的面积的最大值为4$\sqrt{2}$.

查看答案和解析>>

同步练习册答案