精英家教网 > 高中数学 > 题目详情
18.用数字1,2,3,4,5组成没有重复数字的五位数,其中偶数的个数为48.

分析 根据题意,分2步进行分析:①、在2、4之中任选1个,安排在个位,②、将剩下的4个数字安排在其他四个数位,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、要求五位数为偶数,需要在2、4之中任选1个,安排在个位,有2种情况,
②、将剩下的4个数字安排在其他四个数位,有A44=24种情况,
则有2×24=48个五位偶数,
故答案为:48.

点评 本题考查排列、组合的综合应用,要根据偶数的特点确定个位数字,进行分步分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若a+i=(b+i)(2-i)(其中a,b是实数,i为虚数单位),则复数a+bi在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy 中,F,A,B 分别为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦点、右顶点和上顶点,若$OF=FA,{S_{△FAB}}=\frac{{\sqrt{3}}}{2}$
(1)求a的值;
(2)过点P(0,2)作直线l 交椭圆于M,N 两点,过M 作平行于x 轴的直线交椭圆于另外一点Q,连接NQ
,求证:直线NQ 经过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定积分${∫}_{1}^{e}$$\frac{1}{x}$dx的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z为纯虚数且(1+i)z=a-i(其中i是虚数单位,a∈R),则|a+z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知F1(-1,0),F2(1,0),曲线C1上任意一点M满足$|{M{F_2}}|-|{M{F_1}}|=\sqrt{2}$;曲线C2上的点N在y轴的右边且N到F2的距离与它到y轴的距离的差为1.
(1)求C1,C2的方程;
(2)过F1的直线l与C1相交于点A,B,直线AF2,BF2分别与C2相交于点C,D和E,F.求$\sqrt{|{CD}|•|{EF}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设集合$A=\left\{{-1\;,0\;,\frac{1}{2}\;,3}\right\}$,B={x|x≥1},则A∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某地区有一块长方形植物园ABCD,AB=8(百米),BC=4(百米),植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG满足下列要求:E在CD的延长线上,H在BA的延长线上,DE=0.5(百米),AH=4(百米),N为AH的中点,FN⊥AH,EF为曲线段,它上面的任意一点到AD与AH的距离乘积为定值,FG,GH均为线段,GH⊥HA,GH=0.5(百米).
(1)求四边形FGHN的面积;
(2)已知音乐广场M在AB上,AM=2(百米),若计划在EFG的某一处P开一个植物园大门,在原植物园ABCD内选一点Q,为中心建一个休息区,使得QM=PM,且∠QMP=90°,问点P在何处,AQ最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图多面体ABCD中,面ABCD为正方形,棱长AB=2,AE=3,DE=$\sqrt{5}$,二面角E-AD-C的余弦值为$\frac{{\sqrt{5}}}{5}$,且EF∥BD.
(1)证明:面ABCD⊥面EDC;
(2)若直线AF与平面ABCD所成角的正弦值为$\frac{2}{3}$,求二面角AF-E-DC的余弦值.

查看答案和解析>>

同步练习册答案