精英家教网 > 高中数学 > 题目详情
10.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图则输出的值为(  )
(参考数据:sin15°≈0.2588,sin7.5°≈0.1305)
A.6B.12C.24D.48

分析 列出循环过程中S与n的数值,满足判断框的条件即可结束循环.

解答 解:模拟执行程序,可得:
n=6,S=3sin60°=$\frac{3\sqrt{3}}{2}$,
不满足条件S≥3.10,n=12,S=6×sin30°=3,
不满足条件S≥3.10,n=24,S=12×sin15°≈12×0.2588=3.1056,
满足条件S≥3.10,退出循环,输出n的值为24.
故选:C.

点评 本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知{an}是各项均为正数的等比数列,a3=a2+2a1,且a3+1是a2与a4的等差中项
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{a_n}+{log_2}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\frac{1}{{2}^{x}+\sqrt{2}}$,类比课本中推导等差数列前n项和公式的方法,可求得f(-2015)+f(-2014)+f(-2013)+…+f(2014)+f(2015)+f(2016)的值为1008$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校一天共排7节课(其中上午4节、下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有(  )
A.16B.15C.32D.30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=aex+e-x的导函数f′(x)的图象关于原点对称,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程f(x)=f′(x)的实数根x0叫作函数f(x)的“新驻点”.如果函数g(x)=lnx的“新驻点”为α,那么α满足(  )
A.α=1B.0<α<1C.2<α<3D.1<α<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某空调专卖店试销A、B、C三种新型空调,销售情况如表所示:
 第一周  第二周第三周  第四周第五周 
 A型数量(台) 11 10 15 A4 A5
 B型数量(台) 10 12 13 B4 B5
 C型数量(台) 15 12C4  C5
(1)求A型空调前三周的平均周销售量;
(2)根据C型空调前三周的销售情况,预估C型空调五周的平均周销售量为10台,当C型空调周销售量的方差最小时,求C4,C5的值;
(注:方差s2=$\frac{1}{n}$[x1-$\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$为x1,x2,…,xn的平均数)
(3)为跟踪调查空调的使用情况,根据销售记录,从第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正三棱锥P-ABC,侧棱长与底面边长相等,F是BC的中点,异面直线AC与PF所成的角为arccos$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知(2x-1)10=a0+a1x+a2x2++a9x9+a10x10,求a2+a3+…+a9+a10的值为(  )
A.-20B.0C.1D.20

查看答案和解析>>

同步练习册答案