| A. | -1 | B. | 1 | C. | 2 | D. | -2 |
分析 要求三点共线问题,先求每两点对应的向量,然后再按两向量共线进行判断,本题知道$\overrightarrow{AB}$,要根据$\overrightarrow{BC}$和$\overrightarrow{CD}$算出$\overrightarrow{BD}$,再用向量共线的充要条件.
解答 解:因为$\overrightarrow{AB}$=2$\overrightarrow{a}+p\overrightarrow{b}$,$\overrightarrow{BC}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{CD}=(q-1)\overrightarrow{a}-2\overrightarrow{b}$,
$\overrightarrow{BD}$=(2+q)$\overrightarrow{a}$+(p-1)$\overrightarrow{b}$,
又A,B,D三点共线,
∴$\overrightarrow{AB}=λ\overrightarrow{BD}$,
∴λ(2+q)=2,λ(p-1)=p,
化简得pq=-2,
故选D.
点评 本题考查三点共线问题,注意使用三点共线的充要条件,三点共线实质上就是两向量共线,容易出错的是向量共线的坐标形式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{{\sqrt{3}}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 54 | B. | 162 | C. | 54+18$\sqrt{3}$ | D. | 162+18$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com