精英家教网 > 高中数学 > 题目详情
1.在三棱柱ABC-A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,BC=$\sqrt{6}$,AC1与A1C相交于点D.
(1)求证:BD⊥平面AA1C1C;
(2)求二面角A1-AB-C1的正弦值.

分析 (1)推导出BD⊥AC1,BD⊥DC,由此能证明BD⊥面AA1C1C.
(2)由DA1,DA,DB两两垂直,建立空间直角坐标系,利用向量法能求出二面角A1-AB-C1的正弦值.

解答 证明:(1)由题意,菱形ACC1A1中,AC=AA1=2,∠AA1C1=60°,
∴DA=DC1=1,DC=DA1=$\sqrt{3}$,
又∵△BAC1中,BA=BC1=2,∴BD⊥AC1,(三线合一),且BD=$\sqrt{3}$,
∴△BCD中,BC2=DB2+DC2,∴BD⊥DC,
又∵DC?面AA1C1C,且DC∩AC1=D,
∴BD⊥面AA1C1C.
解:(2)由(1)知DA1,DA,DB两两垂直,
建立如图空间直角坐标系
A1($\sqrt{3},0,0$),A(0,1,0),
B(0,0,$\sqrt{3}$),C1(0,-1,0),
平面ABC1的一个法向量$\overrightarrow{m}$=(1,0,0),
设$\overrightarrow{n}$=(x,y,z)是平面ABA1的一个法向量,
$\overrightarrow{AB}$=(0,-1,$\sqrt{3}$),$\overrightarrow{A{A}_{1}}$=($\sqrt{3}$,-1,0),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-y+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{A{A}_{1}}=\sqrt{3}x-y=0}\end{array}\right.$,令y=$\sqrt{3}$,得$\overrightarrow{n}$=(1,$\sqrt{3},1$),
设二面角A1-AB-C1为θ,则0°<θ<180°,
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{5}}$,
sinθ=$\sqrt{1-(\frac{1}{\sqrt{5}})^{2}}$=$\frac{2\sqrt{5}}{5}$.

点评 本题考查线面垂直的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.曲线y=$\sqrt{1-(x-1)^{2}}$与x轴所围成的区域的面积为(  )
A.πB.$\frac{π}{2}$C.$\frac{3π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某三棱锥的三视图如图所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面AEF⊥平面PAB;
(3)设$AB=\sqrt{2}AD$,求直线AC与平面AEF所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=-4+2sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(Ⅱ)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值并写出此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.己知函数f(x)=sinx($\sqrt{3}$cosx+sinx)+$\frac{1}{2}$.
(Ⅰ)若x∈[0,π],求f(x)递增区间;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在二项式${({\sqrt{x}-2})^6}$的展开式中,二项式系数最大的项的系数为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据最新修订的《环境空气质量标准》指出空气质量指数在0~50,各类人群可正常活动.某市环保局在2014年对该市进行了为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为[0,10),[10,20),[20,30),[30,40),[40,50],由此得到样本的空气质量指数频率分布直方图,如图.
(Ⅰ)求a的值;并根据样本数据,试估计这一年度的空气
质量指数的平均值;
(Ⅱ)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为ξ,求ξ的分布列,并估计一个月(30天)中空气质量能达到“最优等级”的天数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设p,q为实数,$\overrightarrow{a},\overrightarrow{b}$是两个不共线向量,$\overrightarrow{AB}$=2$\overrightarrow{a}+p\overrightarrow{b}$,$\overrightarrow{BC}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{CD}=(q-1)\overrightarrow{a}-2\overrightarrow{b}$,若A,B,D三点共线,则pq的值是(  )
A.-1B.1C.2D.-2

查看答案和解析>>

同步练习册答案