精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}为等比数列,b1=1,且b2S2=4,b3S3=
15
4

(1)求an与bn
(2)记数列(
1
Sn
)的前n项和为Tn,且
lim
n→∞
Tn=T,求使bn
T
3
成立的所有正整数n.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出
b1q(2a1+d)=4
b1q2(3a1+3d)=
15
4
,把a1=3,b1=1解得
d=2
q=
1
2
,由此能求出求an与bn
(2)由(1)得Sn=
n(3+2n+1)
2
=n(n+2)
,由此利用裂项求和法能求出Tn=
3
4
-
1
2(n+1)
-
1
2(n+2)
,利用极限知识求出T=
3
4
.由此能求出使bn
T
3
成立的所有正整数n.
解答: 解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
则由题意知
b1q(2a1+d)=4
b1q2(3a1+3d)=
15
4

把a1=3,b1=1代入上式,解得
d=2
q=
1
2
d=-
6
5
q=
5
6

∵等差数列{an}的各项均为正数,∴舍去d=-
6
5

∴an=3+(n-1)×2=2n+1,bn=1×(
1
2
)n-1=(
1
2
)n-1

(2)由(1)得Sn=
n(3+2n+1)
2
=n(n+2)

Tn=
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)

=
1
2
(1-
1
2
+
1
2
-
1
4
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2(n+1)
-
1
2(n+2)

lim
n→∞
Tn=
lim
n→∞
(
3
4
-
1
2(n+1)
-
1
2(n+2)
)
=
3
4

∴T=
3
4

(
1
2
)n-1
1
4
,解得n≤3.
∴n=1,2,3.
点评:本题考查数列的通项公式的求法,考查满足条件的所有正整数的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
1
2
cos2x+
3
2
sinxcosx+1,x∈R,求:
(1)函数y的最大值;
(2)函数y的周期;
(3)函数y的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
-
2
x2
n(n∈N+)的展开式中第五项的二项式系数与第三项的二项式系数的比为14:3
(1)求展开式中各项系数的和
(2)求展开式中含x 
5
2
的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,并且经过定点P(
3
1
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A,B为椭圆E的左右顶点,P为直线l:x=4上的一动点(点P不在x轴上),连AP交椭圆于C点,连PB并延长交椭圆于D点,试问是否存在λ,使得S△ACD=λS△BCD成立,若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1,抛物线C2的焦点均在y轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x0-1
2
4
y-2
2
1
16
-21
(1)求C1,C2的标准方程;
(2)设斜率不为0的动直线l与C1有且只有一个公共点P,且与C2的准线相交于点Q,试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

从一箱产品中随机地抽取一件产品,设事件A=“抽到的一等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05,求下列事件的概率:
(1)事件D=“抽到的是一等品或二等品”;
(2)事件E=“抽到的是二等品或三等品”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R.
(Ⅰ)若直线y=kx+1与函数y=lnx的图象相切,求实数k的值.
(Ⅱ)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b为实数,a>0,则
a+b
|b|
+
|b|
a
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是公差不为零的等差数列{an}的前n项和,若a1=20,且a3,a7,a9成等比数列,则S10=
 

查看答案和解析>>

同步练习册答案