精英家教网 > 高中数学 > 题目详情
5.已知角α终边上一点P(-$\sqrt{3}$,1),求$\frac{sin(2π-α)tan(π+α)sin(-α)}{tan(-α-π)cos(π-α)tan(3π-α)}$.

分析 利用三角函数的定义,求出sinα,利用诱导公式化简所求的表达式,代入求解即可.

解答 解:角α终边上一点P(-$\sqrt{3}$,1),可得sinα=$\frac{1}{2}$,
$\frac{sin(2π-α)tan(π+α)sin(-α)}{tan(-α-π)cos(π-α)tan(3π-α)}$=$\frac{sinαtanαsinα}{-tanαcosαtanα}$=-sinα=$-\frac{1}{2}$.

点评 本题考查诱导公式的应用,三角函数的定义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数的图象上相邻两个最高点的距离为π,若将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度后,所得图象关于y轴对称.则f(x)的解析式为(  )
A.f(x)=2sin(x+$\frac{π}{6}$)B.f(x)=2sin(x+$\frac{π}{3}$)C.f(x)=2sin(2x+$\frac{π}{6}$)D.f(x)=2sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知一元二次方程x2+ax+b=0的一个根在-2与-1之间,另一个根在1与2之间,画出以a,b为坐标的点(a,b)的集合表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.现从5名男同学和4名女同学中选出5名代表,按下列条件,可有多少种不同的选法?
(1)男生甲、女生乙两名同学必须当选;
(2)男生甲必须当选,女生乙不能当选.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若点(1,1)到直线xcosα+ysinα=2的距离为d.
(1)若d=$\frac{2}{3}$,求sin2α的值;
(2)求d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)把49写成两个正数的积,当这两个正数各取何值时,它们的和最小?
(2)把36写成两个正数的和,当这两个正数各取何值时,它们的积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,a1=1,前n项和Sn=$\frac{n+2}{3}$an(n≥2,n∈N*).
(I)求a2,a3及{an}的通项公式;
(Ⅱ)记bn=an+$\frac{n}{2}$,cn=$\frac{1}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=x2+$\frac{1}{{x}^{2}-4}$(x>2)的最小值,并求函数取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以坐标原点为对称中心,两坐标轴为对称轴的双曲线C的一条渐近线的斜率为$\sqrt{3}$,则双曲线C的离心率为(  )
A.2或$\sqrt{3}$B.2或$\frac{2\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

同步练习册答案