精英家教网 > 高中数学 > 题目详情
13.现从5名男同学和4名女同学中选出5名代表,按下列条件,可有多少种不同的选法?
(1)男生甲、女生乙两名同学必须当选;
(2)男生甲必须当选,女生乙不能当选.

分析 (1)男生甲、女生乙两名同学必须当选,从剩下的7个人选3个即可;
(2)男生甲必须当选,女生乙不能当选,从剩下的7个人选4个即可.

解答 解:(1)男生甲、女生乙两名同学必须当选,从剩下的7个人选3个,故有C73=35种;
(2)男生甲必须当选,女生乙不能当选,从剩下的7个人选4个,故有C74=35种.

点评 本题考查排列、组合及简单计数问题,解题的关键是正确理解题设中的事件,及理解计数原理,本题考查了分类的及运算的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.数列{an}满足${S_n}={3^n}+2n+1$,则a4=56.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知M(-2,7),N(4,1),P1,P2是线段MN的三等分点,求P1,P2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x-(e+$\frac{1}{e}$)]2+y2=1任意一点,则线段PQ的长度的最小值为(  )
A.$\frac{e-\sqrt{{e}^{2}-1}}{e}$B.$\frac{\sqrt{2{e}^{2}+1}-e}{e}$C.$\frac{\sqrt{{e}^{2}+1}-e}{e}$D.e+$\frac{1}{e}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式||x-1|-3|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知A=$\frac{π}{6}$,$\frac{bcosA-c}{a}$=$\frac{bcosC-a}{b}$.
(I)求角C的大小;
(Ⅱ)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α终边上一点P(-$\sqrt{3}$,1),求$\frac{sin(2π-α)tan(π+α)sin(-α)}{tan(-α-π)cos(π-α)tan(3π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知A(1,-2)、B(-1,3),$\overrightarrow{{OA}_{1}}$=4$\overrightarrow{OA}$,$\overrightarrow{{OB}_{1}}$=3$\overrightarrow{OB}$,则$\overrightarrow{{{A}_{1}B}_{1}}$=(  )
A.(8,-6)B.(-6,1)C.(7,17)D.(-7,17)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C1:x2+y2+2x+8y-8=0,圆C2:x2+y2+4x-4y-2=0,试判断圆C1与圆C2的关系?

查看答案和解析>>

同步练习册答案