精英家教网 > 高中数学 > 题目详情

已知函数

(1)若,求证:

(2)若,求的最大值;

(3)求证:当时,

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(文)试卷(解析版) 题型:解答题

已知曲线)在处的切线与直线平行.

(1)讨论的单调性;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数g(x)=a(2x-1),h(x)=(2a2+1)1nx,其中a∈R.
(Ⅰ)若直线x=2与曲线y=g(x)分别交于A、B两点,且曲线y=g(x)在点A处的切线与曲线y=h(x)在点B处的切线相互平行,求a的值;
(Ⅱ)令f(x)=g(x)+h(x),若f(x)在[$\frac{1}{2}$,1]上没有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=lnx-2x+6,则f(x)零点的个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某研发公司研制出一款保护视力的护眼仪,并在新疆某中学的甲、乙、丙、丁四个班级中试用,这四个班级人数的条形图如下,为了了解学生护眼仪的使用情况,对四个班的学生进行了问卷调查,然后按分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
 甲班 乙班 丙班 丁班
满意  50% 80% 100% 60%
 一般 25% 0 0 0
 不满意 25% 20% 040%
(1)若学生A在甲班,求学生A的调查问卷被选中的概率;
(2)若需从调查问卷被选中且填写不满意的学生中再选2人进行访谈,求这两人中至少有一人是丁班学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|-5+21x-4x2<0},B={x∈Z|-3<x<6},则(∁RA)∩B的元素的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:
 
(1)计算该炮兵连这8周中总的命中频率p0,并确定第几周的命中频率最高;
(2)以(1)中的p0作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X,求X的数学期望;
(3)以(1)中的p0作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.4=-0.398)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列结论:
动点M(x,y)分别到两定点(-4,0),(4,0)连线的斜率之乘积为-$\frac{9}{16}$,设M(x,y)的轨迹为曲线C,F1、F2分别为曲线C的左右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0),F2(5,0);
(2)曲线C上存在一点M,使得S△F1MF2=9;
(3)P为曲线C上一点,P,F1,F2是直角三角形的三个顶点,且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值为$\frac{23}{9}$;
(4)设A(1,1),动点P在曲线C上,则|PA|+|PF1|的最大值为8+$\sqrt{9-2\sqrt{7}}$;
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a-b|=(  )
A.2B.4C.8D.12

查看答案和解析>>

同步练习册答案