精英家教网 > 高中数学 > 题目详情
2.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,短轴长为2,离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆的方程;
(2)如图,设直线l1;y=x+m1与椭圆交于A、B两点,直线l2:y=x+m2与椭圆交于C、D两点,若四边形ABCD是平行四边形,求四边形ABCD的面积的最大值.

分析 (1)由离心率公式和a,b,c的关系,计算即可得到椭圆方程;
(2)将直线方程和椭圆方程联立,运用韦达定理和弦长公式,化简整理再由三角形的面积公式和基本不等式,计算即可得到△ABO的面积的最大值,再由四边形ABCD的面积为S=4S△OAB.即可得到所求最大值.

解答 解:(1)由短轴长为2,离心率为$\frac{\sqrt{3}}{2}$,
则b=1,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2-b2=c2
解得a=2,c=$\sqrt{3}$,
即有椭圆方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)直线l1;y=x+m1与椭圆方程联立,可得
5x2+8m1x+4m12-4=0,
则x1+x2=-$\frac{8{m}_{1}}{5}$,x1x2=$\frac{4({{m}_{1}}^{2}-1)}{5}$,
|AB|=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}•$$\sqrt{\frac{64{{m}_{1}}^{2}}{25}-\frac{16({{m}_{1}}^{2}-1)}{5}}$=$\frac{4\sqrt{2}}{5}$•$\sqrt{5-{{m}_{1}}^{2}}$,
O到直线AB的距离为d=$\frac{|{m}_{1}|}{\sqrt{2}}$,
即有△OAB的面积为S△OAB=$\frac{1}{2}$d•|AB|=$\frac{2}{5}$$\sqrt{{{m}_{1}}^{2}(5-{{m}_{1}}^{2})}$
≤$\frac{2}{5}$$\sqrt{(\frac{5}{2})^{2}}$=1,当且仅当m12=$\frac{5}{2}$,即m1=±$\frac{\sqrt{10}}{2}$时,取得最大值1.
即有四边形ABCD的面积为S=4S△OAB,且最大值为4.

点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,基本不等式,考查化简整理的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.ax+y-3=0与曲线y=$\frac{lnx}{x}$在x=1处的切线平行,则a的值为(  )
A.a=1B.a=-1C.a=2D.a=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=lnx+aex,g(x)=x3-x2-3.
(1)求g(x)的单调区间及在x=2处的切线方程l;
(2)若对任意的x∈($\frac{1}{2}$,2),函数y=f(x)的图象都在直线l的下方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求$\frac{1}{{C}_{n}^{3}}$-$\frac{1}{{C}_{n}^{4}}$<$\frac{1}{{C}_{n}^{12}}$的解集.
(2)设[x]表示不超过x的最大整数.${C}_{n}^{x}$=$\frac{n(n-1)…(n-[x]+1)}{x(x-1)…(x-[x]+1)}$,x∈[1,+∞).若x∈[$\frac{3}{2}$,3],求C${\;}_{8}^{x}$值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点F1,F2与椭圆短轴的一个端点构成边长为4的正三角形.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C上任意一点P做椭圆C的切线与直线F1P的垂线F1M相交于点M,求点M的轨迹方程;
(Ⅲ)若切线MP与直线x=-2交于点N,求证:$\frac{{|N{F_1}|}}{{|M{F_1}|}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,长方体ABCD-A1B1C1D1的AA1=1,底面ABCD的周长为4.
(1)当长方体ABCD-A1B1C1D1的体积最大时,求直线BA1与平面A1CD所成角;
(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在平面直角坐标系xoy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,直线l与x轴交于点E,与椭圆C交于A、B两点.当直线l垂直于x轴且点E为椭圆C的右焦点时,弦AB的长为$\frac{{2\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)是否存在点E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:log2$\sqrt{\frac{7}{72}}$+log26-$\frac{1}{2}$log228.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C:x2=16y的焦点为F,准线为l,M是l上一点,P是直线MF与C的一个交点,若$\overrightarrow{FM}$=3$\overrightarrow{FP}$,则|PF|=(  )
A.$\frac{16}{3}$B.$\frac{8}{3}$C.$\frac{5}{3}$D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案