分析 根据余弦定理求出cosB=-$\frac{1}{2}$,故b=$\sqrt{7}$,由sinC=2sinA得c=2a,代入余弦定理计算a.
解答 解:∵ac+c2=b2-a2,∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=-$\frac{1}{2}$,
∴B=$\frac{2π}{3}$,∴b=$\sqrt{7}$.
∵sinC=2sinA,∴c=2a,
∴三角形的最短边为a.
由余弦定理得cosB=$\frac{{a}^{2}+4{a}^{2}-7}{4{a}^{2}}=-\frac{1}{2}$,解得a=1.
故答案为1.
点评 本题考查了余弦定理,正弦定理,判断三角形的最长边和最短边是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | $\sqrt{10}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {x|-1≤x<0} | D. | {x|-1<x≤0} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{4}$,$\frac{1}{4}$] | B. | [-$\frac{1}{4}$,$\frac{1}{4}$) | C. | (-∞,-$\frac{1}{4}$]∪[0,$\frac{1}{4}$) | D. | (-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 偶函数 | B. | 奇函数 | ||
| C. | 既是偶函数,也是奇函数 | D. | 既非偶函数,也非奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com