精英家教网 > 高中数学 > 题目详情
8.设数列{an}的前项和为Sn,若点An(n,$\frac{S_n}{n}}$)在函数f(x)=-x+c的图象上运动,其中c是与x无关的常数且a1=3.
(1)求数列{an}的通项公式;
(2)设bn=tanan+1•tanan,tan195+tan3=atan2,求数列{bn}的前99项和(用含a的式子表示).

分析 (1)由点An(n,$\frac{S_n}{n}}$)在函数f(x)=-x+c的图象上运动,可得$\frac{{S}_{n}}{n}$=-n+c,即Sn=-n2+cn,由于c是与x无关的常数且a1=3.代入可得c,再利用递推关系即可得出.
(II)由tan(an+1-an)=$\frac{tan{a}_{n+1}-tan{a}_{n}}{1+tan{a}_{n+1}tan{a}_{n}}$,可得bn=tanan+1•tanan=-$\frac{tan{a}_{n+1}-tan{a}_{n}}{tan2}$-1.即可得出.

解答 解:(1)∵点An(n,$\frac{S_n}{n}}$)在函数f(x)=-x+c的图象上运动,∴$\frac{{S}_{n}}{n}$=-n+c,∴Sn=-n2+cn,
∵c是与x无关的常数且a1=3.∴3=-1+c,解答c=4.
∴Sn=-n2+4n.
∴n≥2时,an=Sn-Sn-1=-n2+4n-[-(n-1)2+4(n-1)]=-2n+5,n=1时也成立.
(II)∵tan(an+1-an)=$\frac{tan{a}_{n+1}-tan{a}_{n}}{1+tan{a}_{n+1}tan{a}_{n}}$,∴bn=tanan+1•tanan=$\frac{tan{a}_{n+1}-tan{a}_{n}}{tan(-2)}$-1=-$\frac{tan{a}_{n+1}-tan{a}_{n}}{tan2}$-1.
∴数列{bn}的前99项和T99=-$\frac{1}{tan2}[(tan{a}_{100}-tan{a}_{99})$+(tana99-tana98)+…+(tana2-tana1)]-99
=-$\frac{tan(-195)-tan3}{tan2}$-99
=a-99.

点评 本题考查了“裂项求和”方法、递推关系、和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.过直线x-y-3=0与2x-y-5=0的交点,且与向量$\overrightarrow{n}$=(1,-3)垂直的直线方程是(  )
A.x-3y-5=0B.3x+y-5=0C.x+3y-5=0D.x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,|$\overrightarrow{a}$|=2014,$\overrightarrow{a}$与x轴非负半轴的夹角为$\frac{π}{3}$,$\overrightarrow{a}$始点与原点重合,终点在第一象限,则向量$\overrightarrow{a}$的坐标是(  )
A.(1007$\sqrt{2}$,1007$\sqrt{2}$)B.(-1007$\sqrt{2}$,1007$\sqrt{2}$)C.(1007,1007$\sqrt{3}$)D.(1007$\sqrt{3}$,1007)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没出险打7折,连续三年没出险打6折
经验表明新车商业险保费与购车价格有较强的线性关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由着8组数据得到的回归直线方程为:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)有评估机构从以往购买了车险的车辆中随机抽取了1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计2016年度出险次数的概率):
一年中出险的次数012345次以上(含5次)
频数5003801001541
广东李先生2016年1月购买一辆价值20万元的新车,根据以上信息,试估计该车辆在2017年1月续保时应缴的商业险保费(精确到元),并分析车险新政是否总体上减轻了车主负担,(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,若A=30°,$a=\sqrt{3}$,则$\frac{a+b+c}{sinA+sinB+sinC}$=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在某城市气象部门的数据中,随机抽取100天的空气质量指数的监测数据如表
空气质量指数t(0,50](50,100](100,150](150,200)(200,300](300,+∞)
质量等级轻微污染轻度污染中度污染严重污染
天数K52322251510
(1)若该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=$\left\{\begin{array}{l}{t,t≤100}\\{2t-100,100<t≤300}\\{\;}\end{array}\right.$且当t>300时,y>500,估计在某一医院收治此类病症人数超过200人的概率;
(2)若在(1)中,当t>300时,y与t的关系拟合与曲线 $\stackrel{∧}{y}$=a+blnt,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10)且知$\sum_{i=1}^{10}$lnti=70,$\sum_{i=1}^{10}$yi=6000,$\sum_{i=1}^{10}$yilnti=42500,$\sum_{i=1}^{10}$(lnti2=500试用可线性化的回归方法,求拟合曲线的表达式
(附:线性回归方程$\stackrel{∧}{y}$=a+bx中,b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:CO⊥面VAB;
(3)求三棱锥C-VAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某产品广告费用x与销售额y(单位:万元)的统计数据如表,根据如表得到回归方程$\stackrel{∧}{y}$=10.6x+a,则a=5.9.
广告费用x4235
销售额y(万元)49263958

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知多项式函数f(x)=2x5-5x4-4x3+3x2-6x+7,当x=5时利用秦九韶算法可得v2=21.

查看答案和解析>>

同步练习册答案