精英家教网 > 高中数学 > 题目详情
15.如图,在四面体ABCD中,平面BAD⊥平面CAD,∠BAD=90°.M,N,Q分别为棱AD,BD,AC的中点.
(1)求证:CD∥平面MNQ;
(2)求证:平面MNQ⊥平面CAD.

分析 (1)通过三角形中位线定理推知MQ∥CD来证得结论;
(2)欲证明平面MNQ⊥平面CAD,只需“利用三角形中位线定理和平行线的性质推知MN⊥平面ACD”证得平面MNQ⊥平面CAD.

解答 证明:(1)因为M,Q分别为棱AD,AC的中点,
所以MQ∥CD,
又CD?平面MNQ,MQ?平面MNQ,
故CD∥平面MNQ.                                            
(2)因为M,N分别为棱AD,BD的中点,所以MN∥AB,
又∠BAD=90°,
所以AB⊥AD,
故MN⊥AD.                                  
因为平面BAD⊥平面CAD,平面BAD∩平面CAD=AD,且MN?平面ABD,
所以MN⊥平面ACD.                                           
又MN?平面MNQ,
平面MNQ⊥平面CAD.

点评 本题考查了线面平行(垂直)的判定定理和性质定理的运用,体现了转化的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx,g(x)=x3+ax2-2x+3.
(1)如果函数g(x)的单调递减区间为(-1,$\frac{2}{3}$),求函数y=g(x)的图象在点P(-$\frac{1}{2}$,g(-$\frac{1}{2}$))处的切线方程;
(2)若不等式2f(x)≤g′(x)+3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥A-DCBE中,AC⊥BC,底面DCBE为平行四边形,DC⊥平面ABC.
(Ⅰ)求证:DE⊥平面ACD; 
(Ⅱ)若∠ABC=30°,AB=2,EB=$\sqrt{3}$,求三棱锥B-ACE的体积;
(Ⅲ)设平面ADE∩平面ABC=直线l,求证:BC∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,底面ABCD是平行四边形,E为PD的中点,点F在棱PD上,且FD=$\frac{1}{3}$PD.
(Ⅰ)求证:PB∥平面EAC;
(Ⅱ)求三棱锥F-ADC与四棱锥P-ABCD的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底面为菱形ABCD的四棱柱ABCD-A1B1C1D1中,∠ABC=60°,AA1=AB=2,A1B=A1D=2$\sqrt{2}$.
(1)求证:AA1⊥面ABCD.
(2)若点E在A1D上,且$\frac{{{A_1}E}}{ED}$=2,求二面角E-AC-D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,设P为椭圆上一点,∠F1PF2的外角平分线所在的直线为l,过F1,F2分别作l的垂线,垂足分别为R,S,当P在椭圆上运动时,R,S所形成的图形的面积为πa2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,EA=ED,AE⊥平面CDE.
(1)求证:AB⊥平面ADE;
(2)设M是线段BE上一点,当直线AM与平面EAD所成角的正弦值为$\frac{{2\sqrt{2}}}{3}$时,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设n∈R,函数fn(x)=xn|x-a|(x≠a),其中a≥0
(1)求函数f2(x)的极值;
(2)设一直线与函数f3(x)的图象切于两点A(x1,y1),B(x2,y2),且x1<x2<a.x12+x22=1,求a的值
(3)当a=0时,数列ak=f0(k),k∈N+.对任意给定的正整数n(n≥2),数列{bn}满足$\frac{{b}_{k+1}}{{b}_{k}}=\frac{k-n}{{a}_{k+1}}$(k=1,2,…,n-1),b1=1,求b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)的定义域为D,若存在正实数k,使得对于任意x∈D,有(x+k)∈D,且f(x+k)≥f(x),则称f(x)是D上的“k级增函数”.
(1)试判断函数f(x)=sinx是否为R上的“k级增函数”?请说明理由;
(2)试证明:对任意的实数k∈(0,4),函数h(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,(x≥0)}\\{{-x}^{2}-2x,(x<0)}\end{array}\right.$不是R上的“k级增函数”;
(3)已知奇函数g(x)是R上的“4级增函数”,且当x≥0时,g(x)=|x-a2|-a2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案