精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+1,x>0
cosx,x≤0
则下列结论正确的是(  )
A、f(x)是偶函数
B、f(x)的值域为[-1+∞)
C、f(x)是周期函数
D、f(x)是增函数
考点:分段函数的应用
专题:函数的性质及应用
分析:由题意,分x>0与x≤0讨论函数在各个部分的取值,从而求函数的值域.
解答: 解:当x>0时,f(x)=x2+1>1,
当x≤0时,f(x)=cosx,
故-1≤cosx≤1,
综上所述,f(x)≥-1,
故f(x)的值域为[-1,+∞).
故选B.
点评:本题考查了分段函数的应用及函数的值域的求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z1,z2.满足|z1|=|z2|=1,且z1+z2=
1
2
+
3
i
2
,求z1,z2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(2,1)及圆x2+y2=4,则过M点的圆的切线方程为
 
,若直线ax-y+4=0与圆相交于A、B两点,且|AB|=2
3
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了治理“沙尘暴“,西部某地区政府经过多年努力,到2006年底,将当地沙漠绿化了40%,从2007年开始,每年将出现这种现象,原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(可参考数据lg2=0.3,最后结果精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈N,x3<x2;命题q:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),则(  )
A、p假q假B、p真q假
C、p假q真D、p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个三棱柱,以这个三棱柱的一个底面为底面的三棱锥,顶点是这个三棱柱另一个底面三角形的顶点,这样的三棱锥一共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的方格柢中,向量
a
b
c
的起点和终点均在格点(小正方形顶点)上,若
c
与x
a
+y
b
(x,y为非零实数)共线,则
x
y
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b>0,a≠b,lna-lnb=a-b,给出下列结论:
①0<ab<1;②0<a+b<2;③a+b-ab>1.
其中所有正确结论的序号是(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x,y的不等式组
x≤0
x+2y≥0
kx-y+1≥0
,表示的平面区域是直角三角形区域,则正数k的值为(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案