精英家教网 > 高中数学 > 题目详情
(1)设
a
=(-3,4),求与
a
相反方向的单位向量
a0
的坐标.
(2)设
a
=(4,6),
b
=(2,x2-2x),且
a
b
,求实数x的值;
(3)已知
a
=(2,5),求过点A(1,3)且与
a
共线的直线方程.
考点:平行向量与共线向量,直线的一般式方程
专题:平面向量及应用
分析:(1)与
a
相反方向单位向量
a0
=
-
a
|
a
|

(2)利用向量共线定理即可得出;
(3)过点A(1,3)且与
a
共线的直线的斜率k=
5
2
,再利用点斜式即可得出.
解答: 解:(1)与
a
相反方向单位向量
a0
=
-
a
|
a
|
=
(3,-4)
32+42
=(
3
5
,-
4
5
)

(2)∵
a
b
,∴4(x2-2x)-6×2=0,化为x2-2x-3=0,解得x=3或-1.
(3)过点A(1,3)且与
a
共线的直线的斜率k=
5
2

因此方程为y-3=
5
2
(x-2),化为5x-2y-4=0.
点评:本题考查了单位向量、向量共线定理、直线的方向向量、直线的点斜式方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
b
为非零向量,则“|
a
+
b
|=|
a
|+|
b
|”是“
a
b
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)求三棱锥C-BPD的高;
(3)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B,C是两个定点,|BC|=6,且△ABC的周长等于16,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

请画出函数y=丨x2-2丨的图象,并求单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点O为极点,以x轴的正半轴为极轴,建立极坐标系.已知直线l的极坐标方程为ρcosθ=5,椭圆C的直角坐标方程为
x2
4
+
y2
3
=1.点A在直线上,点B在椭圆C上,点P与O、A两点构成等腰三角形(O,P,A为逆时针方向)且顶角∠OPA=120°.
(1)求点P的轨迹的极坐标方程和直角坐标方程;
(2)求|PB|的最小值及取最小值时B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在递增等差数列{an}中,前n项和为Sn,且a1a3=5,a1+a3=6,
(1)求数列{an}的通项公式;
(2)若bn=Sn-6an,求数列{bn}的最小值以及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD,底面ABCD是边长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(Ⅱ)若PA=AB,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{bn}满足bn=(-2n)•(
1
2
n-1,求该数列的前n项和Tn

查看答案和解析>>

同步练习册答案