精英家教网 > 高中数学 > 题目详情
3.已知抛物线Γ:y2=2px,准线与x轴的交点为P(-2,0).
(Ⅰ)求抛物线Γ的方程;
(Ⅱ)如图,Q(1,0),过点P的直线l与抛物线Γ交于不同的两点A,B,AQ与BQ分别与抛物线Γ交于点C,D,设AB,DC的斜率分别为k1,k2,AD,BC的斜率分别为k3,k4,问:是否存在常数λ,使得k1k3k4=λk2,若存在,求出λ的值,若不存在,说明理由.

分析 (Ⅰ)利用抛物线的性质,求出p,即可求抛物线Γ的方程;
(Ⅱ)假设存在实数λ,设AB的直线方程为x=my-2,与抛物线方程联立,由$\overrightarrow{AQ}∥\overrightarrow{AC}$化简可得y1y3=-8,同理可得y2y4=-8,利用k1k3k4=λk2,求出λ的值.

解答 解:(Ⅰ)因为准线与x轴的交点为P(-2,0),所以p=4.
所以抛物线Γ的方程为y2=8x----------(4分)
(Ⅱ)假设存在实数λ
设AB的直线方程为x=my-2,$A({\frac{y_1^2}{8},{y_1}})$,$B({\frac{y_2^2}{8},{y_3}})$,$C({\frac{y_3^2}{8},{y_3}})$,$D({\frac{y_4^2}{8},{y_4}})$
由$\left\{\begin{array}{l}x=my-2\\{y^2}=8x\end{array}\right.$化简得:y2-8my+16=0
所以$\left\{\begin{array}{l}{y_1}+{y_2}=8m\\{y_1}{y_2}=16\end{array}\right.$----------(7分)
$\overrightarrow{AQ}=({1-\frac{y_1^2}{8},-{y_1}}),\overrightarrow{AC}=({\frac{y_3^2}{8}-\frac{y_1^2}{8},{y_3}-{y_1}})$
由$\overrightarrow{AQ}∥\overrightarrow{AC}$化简可得y1y3=-8,
同理可得y2y4=-8----------(10分)
因为${k_1}=\frac{8}{{{y_1}+{y_2}}}$,${k_2}=\frac{8}{{{y_3}+{y_4}}}=\frac{8}{{\frac{-8}{y_1}+\frac{-8}{y_2}}}=-\frac{{{y_1}{y_2}}}{{{y_1}+{y_2}}}$,${k_3}=\frac{8}{{{y_1}+{y_4}}}=\frac{8}{{{y_1}-\frac{8}{y_2}}}={y_2}$,${k_4}=\frac{8}{{{y_2}+{y_3}}}={y_1}$
所以代入k1k3k4=λk2得$\frac{8}{{{y_1}+{y_2}}}$y1y2=$-λ\frac{{{y_1}{y_2}}}{{{y_1}+{y_2}}}$,
所以存在λ=-8----------(15分)

点评 本题考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒300粒豆子,其中落在阴影区域内的豆子有200粒,则空白区域的面积约为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.$\int_0^1{({e^x}+x)dx}$ 等于(  )
A.e+$\frac{1}{2}$B.e+$\frac{3}{2}$C.e-$\frac{1}{2}$D.$\frac{1}{2}$-e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中随机抽取一粒,则这粒种子能成长为幼苗的概率为(  )
A.0.72B.$\frac{8}{9}$C.0.8D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}前n项的和为2n-1(n∈N+),则数列{a2n}前n项的和为$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列选项叙述错误的是(  )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
B.若命题p:x∈A∩B,则命题¬p是x∉A或x∉B
C.若p∨q为真命题,则p,q均为真命题
D.“x>2”是“x2-3x+2>0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(理科)如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=4,BC=3,点P∈平面CC1D1D且PD=PC=2$\sqrt{2}$.
(Ⅰ)证明:PD⊥平面PBC;
(Ⅱ)求PA与平面ABCD所成的角的正切值;
(Ⅲ)若AA1=t,当t为何值时,PC∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简$(tanα+\frac{1}{tanα})•\frac{1}{2}sin2α-2{cos^2}$α=(  )
A.cos2αB.sin2αC.cos2αD.-cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线y=x+1与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两渐近线l1,l2依次交于A,B两点,若|AB|=$\frac{\sqrt{10}}{2}$,则双曲线的离心率为(  )
A.$\frac{\sqrt{30}}{5}$B.$\frac{6}{5}$C.$\frac{\sqrt{30}}{5}$或$\sqrt{6}$D.$\frac{6}{5}$或6

查看答案和解析>>

同步练习册答案