精英家教网 > 高中数学 > 题目详情
13.若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则 card(E)+card(F)=(  )
A.200B.150C.100D.50

分析 对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.

解答 解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;
s=3时,p,q,r的取值的排列情况有3×3×3=27种;
s=2时,有2×2×2=8种;
s=1时,有1×1×1=1种;
∴card(E)=64+27+8+1=100;
(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;
若w=3,t,v的取值的排列情况有4×3=12种;
若w=2,有4×2=8种;
若w=1,有4×1=4种;
u=3时:若w=4,t,v的取值的排列情况有3×4=12种;
若w=3,t,v的取值的排列情况有3×3=9种;
若w=2,有3×2=6种;
若w=1,有3×1=3种;
u=2时:若w=4,t,v的取值的排列情况有2×4=8种;
若w=3,有2×3=6种;
若w=2,有2×2=4种;
若w=1,有2×1=2种;
u=1时:若w=4,t,v的取值的排列情况有1×4=4种;
若w=3,有1×3=3种;
若w=2,有1×2=2种;
若w=1,有1×1=1种;
∴card(F)=100;
∴card(E)+card(F)=200.
故选A.

点评 考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥B-AA1C1C中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-C的余弦值; 
(Ⅲ)证明:在线段上BC1存在点D,使得AD⊥A1B,并求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x2-ax+b.
(Ⅰ)讨论函数f(sinx)在(-$\frac{π}{2}$,$\frac{π}{2}$)内的单调性并判断有无极值,有极值时求出最值;
(Ⅱ)记f0(x)=x2-a0x+b0,求函数|f(sinx)-f0(sinx)|在[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值D;
(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b-$\frac{{a}^{2}}{4}$满足条件D≤1时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点,若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
A组:10,11,12,13,14,15,16
B组;12,13,15,16,17,14,a
假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.
(1)证明:BC∥平面PDA;
(2)证明:BC⊥PD;
(3)求点C 到平面PDA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a1+a2=10,a4-a3=2
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b2=a3,b3=a7,问:b6与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足:a1+2a2+…nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N+
(1)求a3的值;
(2)求数列{an}的前 n项和Tn
(3)令b1=a1,bn=$\frac{{T}_{n-1}}{n}$+(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.

查看答案和解析>>

同步练习册答案