精英家教网 > 高中数学 > 题目详情
5.如图,正方体ABCD-A1B1C1D1中,E为线段DD1的中点
(1)求证:AC⊥平面BDD1
(2)求EA与平面BDD1所成角的正弦值.

分析 (1)由正方体ABCD-A1B1C1D1中,DD1⊥平面ABCD,可证DD1⊥AC,又AC⊥BD,即可证明AC⊥平面BDD1
(2)设AC∩BD=O,连接EO,由AC⊥平面DD1B,可得∠AEO为EA与平面BDD1所成角.不妨设正方形的边长为2,AO=$\sqrt{2}$,AE=$\sqrt{5}$,即可由sin∠AEO=$\frac{AO}{AE}$求值.

解答 本题满分为12分
解:(1)证明:∵正方体ABCD-A1B1C1D1中,DD1⊥平面ABCD,
∴DD1⊥AC
又∵在正方向ABCD中,AC⊥BD
∴AC⊥平面BDD1…6分
(2)设AC∩BD=O,连接EO,
∵AC⊥平面DD1B,
∴∠AEO为EA与平面BDD1所成角.
不妨设正方形的边长为2,AO=$\sqrt{2}$,AE=$\sqrt{5}$,
可得:sin∠AEO=$\frac{AO}{AE}$=$\frac{\sqrt{2}}{\sqrt{5}}$=$\frac{\sqrt{10}}{5}$…12分.

点评 本题主要考查了直线与平面垂直的判定,直线与平面所成的角,考查了空间想象能力和推论论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在集合{(x,y)|0≤x≤4,0≤y≤4}内任取1个元素,能使式子x+y-6≥0的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义域为R的函数f(x)满足:(1)当x∈(0,1]时,f(x)=x2;(2)f(x+1)=2f(x),则$\frac{f(x)}{{2}^{x}}$的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)是一个三次函数,f′(x)为其导函数,如图是函数y=x•f′(x)的图象的一部分,则函数f(x)的极大值是(  )
A.f(-1)B.f(-2)C.f(1)D.f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且EB=AB=2,CD=1,
(1)求二面角D-AB-C的正切值
(2)求AD与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知{an}为等差数列,Sn为其前n项和,若a3=-6,S1=S3,则公差d=-12; Sn的最大值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是(  )
A.3$\root{3}{9}$B.1+2$\sqrt{2}$C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,已知a=4,b=3,c=$\sqrt{13}$,则cosC=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.今年柴静的《穹顶之下》发布后,各地口罩市场受其影响生意火爆.A市虽然雾霾现象不太严重,但经抽样有25%的市民表示会购买口罩.现将频率视为概率,解决下列问题:
(1)从该市市民中随机抽取3位,求至少有一位市民会购买口罩的概率;
(2)从该市市民中随机抽取4位,X表示愿意购买口罩的市民人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案