| A. | 0 | B. | 2 | C. | 5 | D. | 6 |
分析 作出不等式组对应的平面区域,利用向量数量积的定义将目标函数进行化简,结合z的几何意义进行求解即可.
解答
解:∵$\overrightarrow{ON}•\overrightarrow{OM}$的最小值为-1,
∴x-y的最小值为-1,
设z=x-y,解:作作出不等式组对应的平面区域如图:
由z=x-y,得y=x-z表示,斜率为1纵截距为-z的一组平行直线,
∵x-y的最小值为-1,
∴作出直线x-y=-1,
则直线x-y=-1与y=2x-1相交于A,此时A为一个边界点,
由$\left\{\begin{array}{l}{x-y=-1}\\{y=2x-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3),
此时A也在直线x+y=m上,
则m=2+3=5,即直线为x+y=5,
平移直线y=x-z,当直线y=x-z经过点A时,直线y=x-z的截距最大,此时z最小,此时zmin=2-3=-1,
满足条件.
故m=5,
故选:C.
点评 本题主要考查线性规划的基本应用,利用z的几何意义以及向量数量积将目标函数进行化简是解决本题的关键.,注意利用数形结合来解决.
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 240 | C. | 480 | D. | 720 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$-1 | B. | 2$\sqrt{3}$+1 | C. | 4 | D. | $\sqrt{6}+\sqrt{2}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{π}{4})$ | B. | $(-π,-\frac{π}{2})$ | C. | $(\frac{3π}{4},2π)$ | D. | $(-\frac{π}{2},-\frac{π}{4})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com