分析 (1)设出两曲线的公共点坐标,分别求出f(x)和g(x)的导函数,把设出点的坐标代入两导函数中得到两关系式,联立两关系式即可解出公共点的横坐标,把求出的横坐标代入得到用a表示出b的式子;
(2)设F(x)=f(x)-g(x),求出F(x)的导函数,根据导函数的正负得到F(x)的单调区间,由x大于0和函数的增减性得到F(x)的最小值为0,即f(x)-g(x)大于等于0,证得当x>0时,f(x)≥g(x).
解答 解:(1)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同.
∵f′(x)=x+2a,g′(x)=$\frac{3{a}^{2}}{x}$,
由题意得:f(x0)=g(x0),f′(x0)=g′(x0).
即$\left\{\begin{array}{l}{\frac{1}{2}{{x}_{0}}^{2}+2a{x}_{0}=3{a}^{2}ln{x}_{0}+b}\\{{x}_{0}+2a=\frac{3{a}^{2}}{{x}_{0}}}\end{array}\right.$,由${x}_{0}+2a=\frac{3{a}^{2}}{{x}_{0}}$,得:x0=a,或x0=-3a(舍去).
即有b=$\frac{1}{2}{a}^{2}+2{a}^{2}-3{a}^{2}lna=\frac{5}{2}{a}^{2}-3{a}^{2}lna$;
(2)设F(x)=f(x)-g(x)=$\frac{1}{2}{x}^{2}+2ax-3{a}^{2}lnx-b$(x>0),
则F′(x)=x+2a-$\frac{3{a}^{2}}{x}$=$\frac{(x-a)(x+3a)}{x}$(x>0).
故F(x)在(0,a)为减函数,在(a,+∞)为增函数,
于是函数F(x)在(0,+∞)上的最小值是F(a)=f(a)-g(a)=$\frac{1}{2}$a2+2a2-3a2lna+$\frac{2}{5}$a2-3a2lna=0,
故当x>0时,有f(x)-g(x)≥0,即当x>0时,f(x)≥g(x).
点评 本题考查利用导数求曲线上过某点切线方程的斜率,会利用导函数的正负判断函数的单调区间,并根据函数的增减性得到函数的极值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 2-$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$<a≤-1 | B. | a≤-$\frac{3}{2}$ | C. | a≤-1 | D. | a>-$\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com