精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的表面积为
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=
3
为底面上的高.据此可计算出表面积.
解答: 解:由三视图可知:该几何体是如图所示的三棱锥,
其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,
边AC上的高OB=1,PO=
3
为底面上的高.
于是此几何体的表面积S=S△PAC+S△ABC+2S△PAB=
1
2
×
3
×2+
1
2
×2×1+2×
1
2
×
12+12
×
22-(
12+12
2
)2
=
3
+1+
7

故答案为:
3
+1+
7
点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在?ABCD的对角线BD的延长线上取点E,F,使BE=DF,求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
满足|
a
|=5,|
b
|≤1,且|
a
-4
b
|≤
21
,则
a
b
的最小值为(  )
A、
25-5
21
4
B、-5
C、
5
2
D、-
21
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}前三项之积为8,且这三项分别加上1、2、2后又成等差数列.
(1)求等比数列{an}的通项公式;
(2)若不等式an2+2nan-k≥0对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设无穷数列{an},如果存在常数A,对于任意给定的正数?(无论多小),总存在正整数N,使得n>N时,恒有|an-A|<?成立,就称数列{an}的极限为A,则四个无穷数列:
①{(-1)n×2};
②{
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
};
③{1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
};
④{1×2+2×22+3×23+…+n×2n},
其极限为2共有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=
1
x
在x=a处的切线的倾角为
4
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
1
3
an+n,n为奇数
an-3n,n为偶数

(I)求证:数列{a2n-
3
2
}是等比数列;
(II)若Sn是数列{an}的前n项和,求满足Sn>0的所有正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.
(Ⅰ)求证:CE∥平面ADF;
(Ⅱ)若K为线段BE上异于B,E的点,CE=2
2
.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
5
1
(|2-x|+|sinx|)dx.

查看答案和解析>>

同步练习册答案