精英家教网 > 高中数学 > 题目详情
设实数a、b、c满足c≥b≥a>0,且a+b+c=
1
a
+
1
b
+
1
c
,求证:ab2c3≥1.
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:首先运用放缩法,由于实数a、b、c满足c≥b≥a>0,则
1
a
1
b
1
a
1
c
,得到ab2c3=a2b2c2
c
a
1
3
a2b2c2
a
a
+
b
a
+
c
a
),再由等式得到≥
1
9
a2b2c2•(
1
a
+
1
b
+
1
c
2=
1
9
(bc+ac+ab)2,再用均值不等式得到(a+b+c)2≥9,即a+b+c≥3,又abc≥1,即可得证.
解答: 证明:由于实数a、b、c满足c≥b≥a>0,
1
a
1
b
1
a
1
c

则ab2c3=a2b2c2
c
a
1
3
a2b2c2•(
a
a
+
b
a
+
c
a

由于a+b+c=
1
a
+
1
b
+
1
c
,则
a
a
+
b
a
+
c
a
=(a+b+c)
3
3a

1
3
1
a
+
1
b
+
1
c
)(
1
a
+
1
b
+
1
c
),
则有
1
3
a2b2c2•(
a
a
+
b
a
+
c
a
)≥
1
9
a2b2c2•(
1
a
+
1
b
+
1
c
2
=
1
9
(bc+ac+ab)2
由于a+b+c=
1
a
+
1
b
+
1
c
,即有abc(a+b+c)=ab+bc+ca,
由于(a+b+c)(
1
a
+
1
b
+
1
c
)≥3
3abc
•3
3
1
abc
=9,
即有(a+b+c)2≥9,即a+b+c≥3,
又abc≥1,
则abc(a+b+c)=ab+bc+ca≥3,
则有
1
9
(bc+ac+ab)2≥1,
故有ab2c3≥1,当且仅当a=b=c=1取等号.
点评:本题考查不等式的证明,考查运用放缩法和均值不等式证明不等式的方法,具有一定的技巧性,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的内角A,B,C所对的边分别为a,b,c,已知三角形ABC的面积S=
a2+b2-c2
4
,则∠C的大小是(  )
A、45°B、30°
C、90°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是椭圆C:
x2
4
+
y2
3
=1的左、右焦点,点P是椭圆上异于顶点的任意一点,过点F2作直线PF2的垂线交直线x=4于点Q.
(1)当PF1⊥F1F2时,求点Q坐标;
(2)判断直线PQ与直线OP的斜率之积是否为定值?若是,求出定值;若不是,说明理由;
(3)证明:直线PQ与椭圆C只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

把一个半径为R的装满水的球形容器放入其外切正方体中,并把球形容器中的水放出,当球形容器中的水面与正方体中水面高度相同时,若不计容器的厚度,则此时水面的高度为(  )
A、
R
3
B、
2R
3
C、
πR
3
D、
3R
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2+p
x+q
是奇函数,且f(2)=4.
(1)求实数p,q的值;
(2)判断函数f(x)在区间(0,2)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1上一点P,F1、F2为椭圆的焦点,若∠F1PF2=θ,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=n+2,设bn=
2an+1
an(an+1)(an+2)
,Sn为数列{bn}的前n项和,求证:
7
60
≤Sn
13
24

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=an+3n,则a9=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x
2-x2
的值域是
 

查看答案和解析>>

同步练习册答案