精英家教网 > 高中数学 > 题目详情
17.已知点A,F分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点和右焦点,过点F的直线l与双曲线C的一条渐近线垂直且与另一条渐近线和y轴分别交于P,Q两点,若$\overrightarrow{AP}$•$\overrightarrow{AQ}$=-a2,则双曲线C的离心率为$\frac{4}{3}$.

分析 由已知条件求出直线l的方程为:y=-$\frac{a}{b}$x+$\frac{ac}{b}$,与y=-$\frac{b}{a}$x联立,能求出P点坐标,将x=0带入直线l,能求出Q点坐标,由$\overrightarrow{AP}$•$\overrightarrow{AQ}$=-a2,由此入手能求出双曲线的离心率.

解答 解:∵A,F分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点、右焦点,
∴A(-a,0)F(c,0),
∵过F的直线l与C的一条渐近线垂直,
且与另一条渐近线和y轴分别交于P,Q两点,
∴直线l的方程为:y=-$\frac{a}{b}$x+$\frac{ac}{b}$,
与y=-$\frac{b}{a}$x联立,解得P点($\frac{{a}^{2}c}{{a}^{2}-{b}^{2}}$,$\frac{abc}{{b}^{2}-{a}^{2}}$)
将x=0代入直线l:y=-$\frac{a}{b}$x+$\frac{ac}{b}$,得Q(0,$\frac{ac}{b}$),
∵$\overrightarrow{AP}$•$\overrightarrow{AQ}$=-a2,∴($\frac{{a}^{2}c}{{a}^{2}-{b}^{2}}$+a,$\frac{abc}{{b}^{2}-{a}^{2}}$)•(a,$\frac{ac}{b}$)=-a2
化简得3e2-e-4=0,
∴e=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查双曲线的离心率的求法,计算量较大,解题时要仔细解答,要熟练掌握双曲线的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{a}$=1的渐近线方程为y=±$\frac{2\sqrt{3}}{3}$x,则此双曲线的离心率是(  )
A.$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{13}}{3}$C.$\frac{5}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若a,b,c分别为△ABC三个内角A,B,C的对边,$\frac{sinA}{a}$=$\frac{cosB}{b}$,则角B=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)-f(x)<0,记a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则a,b,c的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合A={1,2,3,4},B={x∈N*|x2-3x-4<0},则A∪B=(  )
A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.(-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=x3-x2+1,则f(1)-g(1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.F是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的右焦点,A,B是椭圆C上的两个动点,且线段AB的中点M在直线x=-1上.
(Ⅰ)若A点坐标为(-$\frac{4}{3}$,$\frac{1}{3}$),求点M的坐标;
(Ⅱ)求F到直线AB的距离d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列程序框图中,输出的A的值是(  )
A.$\frac{1}{2015}$B.$\frac{1}{2016}$C.$\frac{1}{2017}$D.$\frac{1}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:函数f(x)=x2+$\frac{2}{x}$在数集{x∈R|x>1}上是增加的.

查看答案和解析>>

同步练习册答案