精英家教网 > 高中数学 > 题目详情
8.已知向量$\overrightarrow a=({2,1}),\overrightarrow b=({-3,2})$,若$({\overrightarrow a+\overrightarrow b})⊥({2\overrightarrow a-λ\overrightarrow b})$,则λ=$\frac{2}{9}$.

分析 利用向量垂直与数量积的关系即可得出.

解答 解:$\overrightarrow{a}+\overrightarrow{b}$=(-1,3),
2$\overrightarrow{a}$$-λ\overrightarrow{b}$=(4+3λ,2-2λ),
∵$({\overrightarrow a+\overrightarrow b})⊥({2\overrightarrow a-λ\overrightarrow b})$,
∴-(4+3λ)+3(2-2λ)=0,
解得λ=$\frac{2}{9}$.
故答案为:$\frac{2}{9}$.

点评 本题考查了向量坐标运算性质、向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知F为抛物线C:x2=2py(p>0)的焦点,过F的直线l与C交于A,B两点,M为AB中点,点M到x轴的距离为d,|AB|=2d+1.
(1)求p的值;
(2)过A,B分别作C的两条切线l1,l2,l1∩l2=N.请选择x,y轴中的一条,比较M,N到该轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x2+x)lnx+2x3+(1-a)x2-(a+1)x+b(a,b∈R).
(Ⅰ)当a=3时,若函数f(x)存在零点,求实数b的取值范围;
(Ⅱ)若f(x)≥0恒成立,求b-2a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≤0\\{x^2}-2x+a+1,x>0\end{array}$,若函数g(x)=f(x)-ax-1有4个零点,则实数a的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a+i=(1+2i)•ti(i为虚数单位,a,t∈R),则t+a等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①在函数$y=cos({x-\frac{π}{4}})cos({x+\frac{π}{4}})$的图象中,相邻两个对称中心的距离为π;
②函数y=$\frac{x+3}{x-1}$的图象关于点(-1,1)对称;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分条件;
④已知命题p:对任意的x∈R,都有sinx≤1,则¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,则角C等于30°或150°.
其中所有真命题的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2016年11月,第十一届中国(珠海)国际航空航天博览会开幕式当天,歼-20的首次亮相给观众留下了极深的印象.某参赛国展示了最新研制的两种型号的无人机,先从参观人员中随机抽取100人对这两种型号的无人机进行评价,评价分为三个等级:优秀、良好、合格.由统计信息可知,甲型号无人机被评为优秀的频率为$\frac{3}{5}$、良好的频率为$\frac{2}{5}$;乙型号无人机被评为优秀的频率为$\frac{7}{10}$,且被评为良好的频率是合格的频率的5倍.
(1)求这100人中对乙型号无人机评为优秀和良好的人数;
(2)如果从这100人中按对甲型号无人机的评价等级用分层抽样的方法抽取5人,然后从其他对乙型号无人机评优秀、良好的人员中各选取1人进行座谈会,会后从这7人中随机抽取2人进行现场操作体验活动,求进行现场操作体验活动的2人都评优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知不等式组$\left\{\begin{array}{l}{2x-y≥0}\\{x-y≤0}\\{y+x-k≤0}\end{array}\right.$表示的平面区域的面积为$\frac{4}{3}$,则$\frac{y}{x+1}$的取值范围为[0,$\frac{8}{7}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{a}{x-2}+lnx$,其中a∈R.
(Ⅰ)给出a的一个取值,使得曲线y=f(x)存在斜率为0的切线,并说明理由;
(Ⅱ)若f(x)存在极小值和极大值,证明:f(x)的极小值大于极大值.

查看答案和解析>>

同步练习册答案