精英家教网 > 高中数学 > 题目详情
9.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F也是抛物线C2:y2=2px(p>0)的焦点,C1与C2的一个交点为P,若PF⊥x轴,则双曲线C1的离心率为(  )
A.$\sqrt{2}$+1B.2$\sqrt{2}$C.2$\sqrt{2}$-1D.$\sqrt{3}$+1

分析 根据抛物线的方程算出其焦点为F($\frac{p}{2}$,0),得到|PF|=p.设双曲线的另一个焦点为F′,由双曲线的右焦点为F算出双曲线的焦距|FF′|=p,△TFF′中利用勾股定理算出|MF′|=$\sqrt{2}$p,再由双曲线的定义算出2a=($\sqrt{2}$-1)p,利用双曲线的离心率公式加以计算,可得答案.

解答 解:抛物线y2=2px的焦点为F($\frac{p}{2}$,0),
由MF与x轴垂直,令x=$\frac{p}{2}$,可得|MF|=p,
双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的实半轴为a,半焦距c,另一个焦点为F',
由抛物线y2=2px的焦点F与双曲线的右焦点重合,
即c=$\frac{p}{2}$,可得双曲线的焦距|FF′|=2c=p,
由于△MFF′为直角三角形,则|MF′|=$\sqrt{|FF′{|}^{2}+|PF{|}^{2}}$=$\sqrt{2}$p,
根据双曲线的定义,得2a=|MF′|-|MF|=$\sqrt{2}$p-p,可得a=($\sqrt{2}-1$)p.
因此,该双曲线的离心率e=$\frac{c}{a}$=$\frac{\frac{1}{2}p}{\frac{(\sqrt{2}-1)p}{2}}$=$\sqrt{2}+1$.
故选:A.

点评 本题给出共焦点的双曲线与抛物线,在它们的交点在x轴上射影恰好为抛物线的焦点时,求双曲线的离心率.着重考查了抛物线和双曲线的定义与标准方程、简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知F1、F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1、A2分别为其左、右顶点,过F2且与x轴垂直的直线l与椭圆相交于M、N两点.若四边形A1MA2N的面积等于2,且满足|$\overrightarrow{{A}_{1}{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{MN}$|+|$\overrightarrow{{A}_{2}{F}_{2}}$|.
(1)求此椭圆的方程;
(2)设⊙O的直径为F1F2,直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点P、Q,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=λ,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],求△POQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(3,4)$,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若变量x,y满足约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}}\right.$,且z=4x+8y的最大值为(  )
A.21B.23C.28D.31

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sinα-cosα=$\frac{1}{5}$,0≤α≤π,则sin2α=$\frac{24}{25}$,sin(2α-$\frac{π}{4}$)=$\frac{31\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$.
(1)求该高中获得冠军个数X的分布列;
(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线C1:y2=2x的焦点F是双曲线C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个顶点,两条曲线的一个交点为M,若|MF|=$\frac{3}{2}$,则双曲线C2的离心率是(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{\sqrt{33}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知3a+2b=1,a,b∈R*,则$\frac{1}{12a+1}+\frac{1}{8b+1}$的最小值$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案