精英家教网 > 高中数学 > 题目详情
12.已知关于x的方程2x2-3x-2a+7=0的两个实数根一个大于-1,另一个小于-1,求a的取值范围.

分析 设f(x)=2x2-3x-2a+7,则由题意可得f(-1)<0,由此求得a的取值范围.

解答 解:设f(x)=2x2-3x-2a+7,则由题意可得f(-1)=12-2a<0,
求得a>6.

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx(ω>0)的周期为$\frac{π}{2}$.
(1)求ω的值及f(x)的表达式;
(2)求f(x)的最大值及相应的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=ax2+(a+3)x-1,当0≤x≤m时有-$\frac{25}{4}$≤y≤-1,则实数m的取值范围是$(0,\frac{3+\sqrt{37}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数的定义域.
(1)y=$\frac{1}{{log}_{2}x}$;
(2)y=$\sqrt{lo{g}_{3}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.方程tanx+sinx-|tanx-sinx|+2lgx=0在[0,4π]上根的个数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.为了解今年某校高三毕业班准备报考飞行员学生的体重(单位:kg)情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第一小组的频数为6,则该校报考飞行员的总人数为48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若对任意的x∈R,函数f(x)满足f(x+2012)=-f(x+2011),且f(2012)=-2012,则f(-1)=2012.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若关于x的不等式3-|x-a|>x2至少有一个负数解,则实数a的取值范围是(  )
A.$-3<a<\frac{13}{4}$B.$-\frac{13}{4}<a<\frac{13}{4}$C.-3<a<3D.$-\frac{13}{4}<a<3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知某组合体的三视图如下图所示,试画出该几何体的直观图.

查看答案和解析>>

同步练习册答案