精英家教网 > 高中数学 > 题目详情
3.已知大于1的任意一个自然数的三次幂都可写成连续奇数的和.如:
若m是自然数,把m3按上述表示,等式右侧的奇数中含有2015,则m=45.

分析 由题意知,m的三次方就是m个连续奇数相加,且从2开始,这些三次方的分解正好是从奇数3开始连续出现,由此规律即可找出m3的等式右侧的奇数中含有2015时m的值.

解答 解:由题意,从23到m3,从3开始的连续奇数共2+3+4+…+m=$\frac{(m+2)(m-1)}{2}$个,
2015=3+2(n-1),
所以n=1007,
即2015是从3开始的第1007个奇数,
当m=44时,从23到443,从3开始的连续奇数共$\frac{(44+2)(44-1)}{2}$=989个
当m=45时,从23到453,从3开始的连续奇数共$\frac{(45+2)(45-1)}{2}$=1034个
故m=45,
故答案为:45.

点评 本题考查归纳推理,求解的关键是根据归纳推理的原理归纳出结论,其中分析出分解式中项数及每个式子中各数据之间的变化规律是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若椭圆的长轴长、短轴长、焦距组成一个等差数列,则该椭圆的离心率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求直线AC与平面CBE所成角正弦值;
(Ⅲ)求面ACD和面BCE所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知m∈R,设命题p:不等式|m2-m|>6;命题q:函数$f(x)={x^3}+m{x^2}+(m+\frac{4}{3})x+2$在(-∞,+∞)上有极值.求使p且q为真命题的m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在半径为R的圆的内接四边形ABCD中,AB=2,BC=4,∠ABC=120°,AD+CD=10.求:
(Ⅰ)AC的长及圆的半径R;
(Ⅱ)四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=log2(x+2)+x-5存在唯一零点x0,则大于x0的最小整数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.方程mx2+ny2=1不可能表示的曲线为(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.观察下列顺序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31…猜想第n个等式应为(  )
A.9(n+1)+n=10n+9B.9(n-1)+(n-1)=10n-10C.9n+(n-1)=10n-1D.9(n-1)+n=10n-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等比数列{an}中,a3=7,前3项之和S3=21,则公比q的值等于(  )
A.1B.-$\frac{1}{2}$C.1或$-\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

同步练习册答案