精英家教网 > 高中数学 > 题目详情
4.某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00

分析 (1)根据频率、频数与样本容量的关系,求出对应的数值,画出频率分布直方图;
(2)利用分层抽样原理,求出各小组应抽取的人数;
(3)利用列举法求出基本事件数,计算对应的概率值.

解答 解:(1)由题可知,第2组的频数为0.35×100=35人,
第3组的频率为$\frac{30}{100}$=0.300,频率分布直方图如图所示;
(2)因为第3、4、5组共有60名学生,
所以利用分层抽样在60名学生中抽取6名学生,每组分别为:
第3组:$\frac{30}{60}$×6=3人;第4组:$\frac{20}{60}$×6=2人;
第5组:$\frac{10}{60}$×6=1人.
所以第3、4、5组分别抽取3人、2人、1人.
(3)设第3组的3位同学为A1、A2、A3
第4组的2位同学为B1、B2,第5组的1位同学为C,
则从六位同学中抽两位同学有15种可能,具体如下:
A1A2,A1A3,A1B1,A1B2,A1C,A2A3
A2B1,A2B2,A2C,A3B1,A3B2,A3C,B1B2,B1C,B2C;
其中第4组的2位同学B1,B2至少有一位同学入选的有:
A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,B1C,B2C共9种可能;
所以其中第4组的2位同学B1、B2至少有一位同学入选的概率为
P=$\frac{9}{15}$=$\frac{3}{5}$.

点评 本题考查了频率分布直方图的应用问题,也考查了分层抽样方法的应用问题,考查了利用列举法求概率的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的离心率为2,一个焦点到一条渐近线的距离为1,则该双曲线的方程为3x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.y=x2-kx,在x=1处的切线与y=x+1垂直,则k的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,PA是圆的切线,A为切点,PBC是圆的割线,且PB=$\frac{1}{2}$BC,则$\frac{PA}{PB}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i是虚数单位,m∈R,且$\frac{2-mi}{1+i}$是纯虚数,则($\frac{2-mi}{2+mi}$)2011的值为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“已知关于x的不等式ax2+bx+c>0的解集为(1,2),解关于x的不等式cx2+bx+a>0.”给出如下的一种解法:
解:由ax2+bx+c>0的解集为(1,2),得,a($\frac{1}{x}$)2+b($\frac{1}{x}$)+c>0的解集为($\frac{1}{2}$,1),
即关于x的不等式cx2+bx+a>0的解集为($\frac{1}{2}$,1).
参考上述解法:若关于x的不等式$\frac{b}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-1,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),则关于x的不等式$\frac{b}{x-a}$-$\frac{x-b}{x-c}$>0的解集为(  )
A.(-1,1)B.(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1)C.(-∞,-$\frac{1}{2}$)∪($\frac{1}{3}$,1)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个袋中装有5个形状大小完全相同的围棋子,其中3个黑子,2个白子.
(Ⅰ)从袋中随机取出两个棋子,求取出的两个棋子颜色相同的概率;
(Ⅱ)从袋中随机取出一个棋子,将棋子放回后再从袋中随机取出一个棋子,求两次取出的棋子中至少有一个白子的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:函数y=f(x)在区间[a,b]上单调递增,命题q:函数y=f(x)单调递增区间为[a,b],则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),左、右焦点分别是F1,F2,若椭圆C上的点$P(1,\frac{{\sqrt{3}}}{2})$到F1,F2的距离和等于4
(Ⅰ)写出椭圆C的方程和焦点坐标;
(Ⅱ)直线l过定点M(0,2),且与椭圆C交于不同的两点A,B,
(i)若直线l倾斜角为$\frac{π}{3}$,求|AB|的值.
(ii)若$\overrightarrow{OA}•\overrightarrow{OB}$>0,求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案