精英家教网 > 高中数学 > 题目详情
随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康,得到2×2列联表如下:
室外工作 室内工作 合计
有呼吸系统疾病 150
无呼吸系统疾病 100
合计 200
(1)补全2×2列联表;
(2)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关.
考点:独立性检验的应用
专题:计算题,概率与统计
分析:(1)由所给数据,结合500,即可补全2×2列联表;
(2)根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,即可得出结论.
解答: 解:列联表如下
室外工作 室内工作 合计
有呼吸系统疾病 150 200 350
无呼吸系统疾病 50 100 150
合计 200 300 500
(6分)(每个空1分)
计算k2=
500×(150×100-200×50)2
350×150×200×300
≈3.968
…(10分)
所以有95%的把握认为感染呼吸系统疾病与工作场所有关.(12分)
点评:本题考查独立性检验的应用,考查根据列联表做出观测值,根据所给的临界值表进行比较,考查概率知识的运用,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

.
3
2
-
1
2
1
2
3
2
.
n
 
=
.
10
01
.
,n∈N*,则n的最小值为(  )
A、3B、6C、9D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

求数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

郑州是一个缺水的城市,人均水资源占有量仅为全国的十分之一,政府部门提出“节约用水,我们共同的责任”倡议,某用水量较大的企业积极响应政府号召对生产设备进行技术改造,以达到节约用水的目的,下表提供了该企业节约用水技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产用水y(吨)的几组对照数据:
x 2 3 4 5
y 3 3.5 4.7 6
(Ⅰ)请根据上表提供的数据,若x,y之间是线性相关,求y关于x的线性回归方程
y
=bx+a;
(Ⅱ)已知该厂技术改造前100吨甲产品的生产用水为130吨,试根据(Ⅰ)求出的线性回归方程,预测技术改造后生产100吨甲产品的用水量比技术改造前减少多少吨水?

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩猜数字游戏,规则如下:
①连续竞猜3次,每次相互独立;
②每次竟猜时,先由甲写出一个数字,记为a,再由乙猜测甲写的数字,记为b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,则本次竞猜成功;
③在3次竞猜中,至少有2次竞猜成功,则两人获奖.
(1)求每一次竞猜成功的概率;
(2)求甲乙两人玩此游戏获奖的概率;
(3)现从6人组成的代表队中选4人参加此游戏,这6人中有且仅有2对双胞胎,记选出的4人中含有双胞胎的对数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边过点P(-4,3).
(Ⅰ)求
tanα
sin(π-α)-cos(
π
2
+α)
的值;
(Ⅱ)若β为第三象限角,且tanβ=
4
3
,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2sin(
x
3
+
π
6
),求:
(1)它的单调增区间;
(2)当x为何值时,使得y>1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1+x)2-21n(1+x).
(1)求f(x)的单调区间;
(2)试讨论关于x的方程:f(x)=x2+x+a在区间[0,2]上的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的取值集合为
 

查看答案和解析>>

同步练习册答案