| A. | 沿x轴向左平移$\frac{π}{2}$个单位,纵坐标伸长为原来的2倍 | |
| B. | 沿x轴向右平移$\frac{π}{2}$个单位,纵坐标伸长为原来的2倍 | |
| C. | 沿x轴向左平移$\frac{π}{4}$个单位,纵坐标伸长为原来的2倍 | |
| D. | 沿x轴向右平移$\frac{π}{4}$个单位,纵坐标伸长为原来的2倍 |
分析 先求得f′(x)的解析式,再利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:函数y=f′(x)=[sin(2x+φ)]′=2cos(2x+φ),
∵函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的一个对称中心为($\frac{π}{3}$,0),
∴2•$\frac{π}{3}$+φ=kπ,k∈Z,∴φ=$\frac{π}{3}$,∴f(x)=sin(2x+$\frac{π}{3}$),∴f′(x)=2cos(2x+$\frac{π}{3}$)=2sin(2x+$\frac{5π}{6}$)=2sin2(x+$\frac{5π}{12}$).
把函数f(x)=sin(2x+$\frac{π}{3}$)=sin2(x+$\frac{π}{6}$)的图象沿x轴向左平移$\frac{π}{4}$个单位,可得y=sin2(x+$\frac{5π}{12}$)的图象,
再把纵坐标伸长为原来的2倍,可得f′(x)=2sin2(x+$\frac{5π}{12}$)的图象,
故选:C.
点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①②③ | C. | ①②④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=±\sqrt{3}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | $y=±\frac{1}{3}x$ | D. | y=±3x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com