分析 化抛物线方程为标准方程,求得p,进一步求得$\frac{p}{2}$,再由不同类型的标准方程求出对应的焦点坐标和准线方程.
解答 解:(1)由x2+6y=0,得x2=-6y,
∴2p=6,p=3,$\frac{p}{2}=\frac{3}{2}$,则抛物线的焦点坐标为F(0,$-\frac{3}{2}$),准线方程为:y=$\frac{3}{2}$;
(2)由6y2=x,得${y}^{2}=\frac{1}{6}x$,
∴2p=$\frac{1}{6}$,p=$\frac{1}{12}$,$\frac{p}{2}=\frac{1}{24}$,则抛物线的焦点坐标为F($\frac{1}{24},0$),准线方程为:x=-$\frac{1}{24}$;
(3)由y=$\frac{1}{4}$x2,得x2=4y,
∴2p=4,p=2,$\frac{p}{2}=1$,则抛物线的焦点坐标为F(0,1),准线方程为:x=-1.
点评 本题考查抛物线的标准方程,考查由抛物线方程求焦点坐标和准线方程,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{2}$m2 | B. | $\frac{3}{2}$m2 | C. | -6m2 | D. | 12m2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com