精英家教网 > 高中数学 > 题目详情
8.(Ⅰ)已知函数f(x)=|2x-3|-2|x|,若关于x不等式f(x)≤|a+2|+2a恒成立,求实数a的取值范围;
(Ⅱ)已知正数x,y,z满足2x+y+z=1,求证$\frac{1}{x+2y+z}+\frac{3}{z+3x}$$≥2+\sqrt{3}$.

分析 (I)利用绝对值不等式的性质得出f(x)的最大值,得出关于a的不等式,再讨论a+2的符合解不等式即可;
(II)利用柯西不等式即可得出结论.

解答 解:(Ⅰ)∵f(x)=|2x-3|-|2x|≤|(2x-3)-2x|=3,
∴3≤|a+2|+2a,
当a<-2时,不等式为3≤-a-2+2a,解得a≥5(舍),
当a≥-2时,不等式为3≤a+2+2a,解得a≥$\frac{1}{3}$,
综上,a的取值范围是[$\frac{1}{3}$,+∞).   
(Ⅱ)∵2x+y+z=1,∴(x+2y+z)+(z+3x)=4x+2y+2z=2,
∴$\frac{1}{x+2y+z}+\frac{3}{z+3x}$=$\frac{1}{2}$($\frac{1}{x+2y+z}+\frac{3}{z+3x}$)[(x+2y+z)+(z+3x)]
≥$\frac{1}{2}$×(1+$\sqrt{3}$)2=2+$\sqrt{3}$.

点评 本题考查了绝对值不等式的性质与解法,柯西不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,a4=10,S4=28,数列$\left\{{\frac{1}{{{S_n}+2}}}\right\}$的前n项和为Tn,则T2017=$\frac{2017}{4038}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知R是实数集,集合A={x|x2-x-2≤0},$B=\left\{{x|\frac{2x-1}{x-6}≥0}\right\}$,则A∩(∁RB)=(  )
A.(1,6)B.[-1,2]C.$({\frac{1}{2},6})$D.$({\frac{1}{2},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设数列{an}满足${a_1}=\frac{3}{8}$,且对任意的n∈N*,满足${a_{n+2}}-{a_n}≤{3^n},{a_{n+4}}-{a_n}≥10×{3^n}$,则a2017=$\frac{{{3^{2017}}}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{1}{2}{x^2}+x-xlnx$的导函数为f'(x).
(Ⅰ)判断f(x)的单调性;
(Ⅱ)若关于x的方程f'(x)=m有两个实数根x1,x2(x1<x2),求证:${x_1}{x_2}^2<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y+1≥0\\ x≤3\end{array}\right.$,若z=mx+y的最小值为-3,则m的值为(  )
A.-9B.$-\frac{7}{3}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},则(  )
A.任意m∈A,都有f(m+3)>0B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0D.存在m∈A,都有f(m+3)<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:不等式|m-1|≤$\sqrt{{a^2}+4}$对于$a∈[{-2,\sqrt{5}}]$恒成立,q:x2+mx+m<0有解,若p∨q为真,p∧q为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C的对边分别为a,b,c,a2+c2-b2=ac,b=$\sqrt{3}$,则2a+c的取值范围是($\sqrt{3}$,2$\sqrt{7}$].

查看答案和解析>>

同步练习册答案