精英家教网 > 高中数学 > 题目详情
如图是某空间几何体的直观图,则该几何体的侧视图是(  )
A、
B、
C、
D、
考点:简单空间图形的三视图
专题:空间位置关系与距离
分析:由已知可得该几何体的侧视图的外轮廓为正方形,分析侧视图中斜向棱的虚实情况,比照答案后,可得答案.
解答: 解:∵该几何体是一个正方体去掉一个角(三棱锥)得到的组合体,
故其侧视图的外框为一个正方形,
由于正方体右侧面的对角线在侧视图中看不到,故应画为虚线,
故选:A
点评:本题考查的知识点是简单空间几何体的三视图,其中熟练掌握三视图画法是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1的一条渐近线的倾斜角为α,且2cos2α=2sin2α+1,则双曲线的离心率为(  )
A、
2
3
3
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

球面上有三个点A、B、C,其中AB=18,BC=24,AC=30,且球心到平面ABC的距离为球半径的一半,那么这个球的半径为(  )
A、20
B、30
C、10
3
D、15
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若对定义在R上的可导函数f(x)恒有(4-x)f(x)+xf′(x)>0,则f(x)(  )
A、恒大于等于0
B、恒小于0
C、恒大于0
D、和0的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={(x,y)|x+y≤4,x≥0,y≥0},B={(x,y)|0≤x≤1,0≤y≤3},若向区域A上随机投一粒豆子,则豆子落入区域B的概率为(  )
A、
1
4
B、
3
8
C、
1
2
D、
5
8

查看答案和解析>>

科目:高中数学 来源: 题型:

定义一:对于一个函数f(x)(x∈D),若存在两条距离为d的直线y=kx+m1和y=kx+m2,使得在x∈D时,kx+m1≤f(x)≤kx+m2 恒成立,则称函数f(x)在D内有一个宽度为d的通道.
定义二:若一个函数f(x),对于任意给定的正数?,都存在一个实数x0,使得函数f(x)在[x0,+∞)内有一个宽度为?的通道,则称f(x)在正无穷处有永恒通道.
下列函数:
①f(x)=lnx,
②f(x)=
sinx
x

③f(x)=
x2-1

④f(x)=e-x
其中在正无穷处有永恒通道的函数的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和为Sn,满足Sn-an=
(an-1)2
4

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;设函数f(x)的定义域为R+,且f(1)=3.
(Ⅰ)若(a,b)是f(x)的一个“P数对”,且f(2)=6,f(4)=9,求常数a,b的值;
(Ⅱ)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(Ⅲ)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求k的值及f(x)在区间[1,2n)(n∈N*)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校随机抽取某次高三数学模拟考试甲、乙两班各10名同学的客观题成绩(满分60分),统计后获得成绩数据的茎叶图(以十位数字为茎,个位数字为叶),如图所示:
(Ⅰ)分别计算两组数据的平均数,并比较哪个班级的客观题平均成绩更好;
(Ⅱ)从这两组数据中分别抽取一个数据,求其中至少有一个是满分(60分)的概率;
(Ⅲ)规定:客观题成绩不低于55分为“优秀客观卷”,从甲班的十个数据中任意抽取两个,求两个都是“优秀客观卷”的概率.
甲 班 乙 班
 35
 5 0 045 5 0
 5 5 5 5 050 0 5 5 5
0 060

查看答案和解析>>

同步练习册答案