精英家教网 > 高中数学 > 题目详情
4.在直角坐标系xoy中,点P到两点(0,$-\sqrt{3}$)、(0,$\sqrt{3}$)的距离之和等于4,设点P的轨迹为C.
(1)求C的轨迹方程;
(2)设直线$y=\frac{1}{2}x$与C交于A、B两点,求弦AB的长度.

分析 (1)设P(x,y),运用椭圆的定义,可得2a=4,再由椭圆的a,b,c的关系,可得b,进而得到椭圆方程;
(2)设A(x1,y1),B(x2,y2),联立直线方程和椭圆方程,运用韦达定理和弦长公式,计算即可得到所求值.

解答 解:(1)设P(x,y),M(0,$-\sqrt{3}$)、N(0,$\sqrt{3}$)
∵|PM|+|PN|=4>2$\sqrt{3}$=|MN|,
由椭圆定义可知,点P的轨迹C是以M、N为焦点,长半轴为2的椭圆,
它的短半轴b=$\sqrt{4-3}$=1,
故曲线C的方程为x2+$\frac{{y}^{2}}{4}$=1;
(2)设A(x1,y1),B(x2,y2),
直线$y=\frac{1}{2}x$与C,消去y并整理得$\frac{5}{4}$x2=4,
故x=±$\frac{4\sqrt{5}}{5}$,
∴有|AB|=$\sqrt{1+\frac{1}{4}}$•$\frac{8\sqrt{5}}{5}$=4.

点评 本题考查椭圆的方程的求法,注意运用椭圆的定义,考查弦长的求法,注意运用直线方程和椭圆方程联立,运用韦达定理和弦长公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=sin x+1与y=2的图象在[-2π,2π]上交点个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知⊙O1:(x-1)2+y2=4,⊙O2:x2+(y-$\sqrt{3}$)2=9.求两圆的公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设{an}为公比q>1的等比数列,若a2016和a2017是方程4x2-8x+3=0的两根,则a2018+a2019=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$f(x)=\frac{x}{1+x}$,x≥0,若f1(x)=f(x),fn(x)=f(fn-1(x)),n∈N+,则f2014(x)的表达式为$\frac{x}{1+2014x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设X~B(4,p),其中0<p<$\frac{1}{2}$,且P(X=2)=$\frac{8}{27}$,那么P(X=1)=(  )
A.$\frac{8}{81}$B.$\frac{16}{81}$C.$\frac{8}{27}$D.$\frac{32}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z满足|z-3i|=10,则复平面内和复数z对应的点围成的几何图形是(  )
A.椭圆B.双曲线C.D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数$f(x)=sin(2ωx-\frac{π}{6})$将其图象向左平移$\frac{π}{4}$个单位得到函数g(x)图象,且函数g(x)图象关于y轴对称,若ω是使变换成立的最小正数,则ω=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=2sin(πx+φ)+1(0<φ<π)是偶函数,则φ=$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案