精英家教网 > 高中数学 > 题目详情
13.甲、乙两人射击,甲射击一次中靶的概率是p1,乙射击一次中靶的概率是p2,且$\frac{1}{{p}_{1}}$,$\frac{1}{{p}_{2}}$是方程x2-5x+6=0的两个实根,已知甲射击5次,中靶次数的方差是$\frac{5}{4}$.
(1)求p1,p2的值;
(2)若两人各射击2次,至少中靶3次就算完成目的,则完成目的概率是多少?
(3)若两人各射击1次,至少中靶1次就算完成目的,则完成目的概率是多少?

分析 (1)甲射击5次,中靶次数k服从二项分布,根据二项分布的方差计算公式Dξ=5p1 (1-p1),即可求得p1,根据韦达定理得$\frac{1}{{p}_{1}}•\frac{1}{{p}_{2}}$=6,可求得p2的值;
(2)两人各射击2次,中靶至少3次就算完成目的,分两种情况讨论,共击中3次的概率,根据n次独立重复实验事件A恰好发生k的概率公式,代入即可求得结果;同理可求出击中4次的概率,这两种情况互斥,根据概率的加法公式即可求得结果;
(3)两人各射击一次,中靶至少一次就算完成目的,该事件的对立事件为“两人各射击一次,没有中靶”,利用对立事件的概率公式即可求得结果.

解答 解:(1)由题意可知 ξ~B(5,p1),
∴Dξ=5p1 (1-p1)=$\frac{5}{4}$,
∴p12-p1+$\frac{1}{4}$=0,
解得p1=$\frac{1}{2}$;
又$\frac{1}{{p}_{1}}$,$\frac{1}{{p}_{2}}$是方程x2-5x+6=0的两个实根,
∴$\frac{1}{{p}_{1}}•\frac{1}{{p}_{2}}$=6,
解得p2=$\frac{1}{3}$.   
(2)两人各射击2次,至少中靶3次就算完成目的,则完成目的两类情况:
①共击中3次概率C22( $\frac{1}{2}$) 2 (1-$\frac{1}{2}$)×C21($\frac{1}{3}$) 1 (1-$\frac{1}{3}$) 1+C21($\frac{1}{2}$) 1 ($\frac{1}{2}$) 1×C22($\frac{1}{3}$) 2($\frac{1}{3}$)=$\frac{1}{6}$;
共击中4次概率C22($\frac{1}{2}$) 2 ($\frac{1}{2}$)×C22($\frac{1}{3}$) 2 ($\frac{2}{3}$)=$\frac{1}{36}$. 
∴所求概率为$\frac{1}{6}+\frac{1}{36}$=$\frac{7}{36}$.  
(3)设事件A,B分别表示甲、乙能击中.
∵A,B互相独立,
∴P($\overline{A}$•$\overline{B}$ )=P($\overline{A}$) P($\overline{B}$)=(1-P(A) )(1-P(B) )=(1-p1)(1-p2)=$\frac{1}{2}×\frac{2}{3}=\frac{1}{3}$,
∴“两人各射击一次,中靶至少一次就算完成目的”的概率为:1-P($\overline{A}$•$\overline{B}$)=$\frac{2}{3}$.

点评 这一类型的试题在连续几年的高考卷都出现了,重点考查了分类讨论的数学思想,体现了《考试说明》所要求的创新意识和实践能力以及运用数学知识解决实际问题的能力.该题仍然是常规题,要求考生耐心细致,审题能力较强,并善于利用材料进行分析说明,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设等比数列{an}的首项a1=1,且4a1,2a2,a3成等差数列,则数列{an}的前10项和S10=1023.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若曲线ρ2-2aρcosθ-2aρsinθ+2a2-4=0上有且仅有两个点到原点的距离为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.平面直角坐标系xOy中,圆M:(x-2)2+y2=1,曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosα}\\{y=sinα}\end{array}\right.$(α为参数).在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=$\frac{π}{6}$(ρ∈R).
(1)求圆M的极坐标方程及曲线C的普通方程;
(2)设l与圆M相切于点A,且在第三象限内与C交于点N,求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某地人群中高血压的患病率为p,由该地区随机抽查n人,则(  )
A.样本患病率X/n服从B(n,p)
B.n人中患高血压的人数X服从B(n,p)
C.患病人数与样本患病率均不服从B(n,p)
D.患病人数与样本患病率均服从B(n,p)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.棱长为1的正四面体ABCD中,E为棱AB上一点(不含A,B两点),点E到平面ACD和平面BCD的距离分别为a,b,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=$\sqrt{2}$sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,且当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asin2x+bcos2x(a,b∈R)的图象过点($\frac{π}{12}$,2),且点(-$\frac{π}{6}$,0)是其对称中心,将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,则函数g(x)的解析式为(  )
A.g(x)=2sin2xB.g(x)=2cos2xC.g(x)=2sin(2x+$\frac{π}{6}$)D.g(x)=2sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知(x+2)7=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7
(1)求a5
(2)求(x+2)7展开式中系数最大的项.

查看答案和解析>>

同步练习册答案