精英家教网 > 高中数学 > 题目详情
三角形ABC中,角A,B,C所对的边分别为a,b,c,已知a=10,b=10
3
,A=30°,求边c及面积S.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:利用余弦定理列出关系式,将a,b,cosA的值代入求出c的值,再利用三角形面积公式即可求出三角形ABC面积S.
解答: 解:∵a=10,b=10
3
,A=30°,
∴cosA=
b2+c2-a2
2bc
,即cos30°=
300+c2-100
20
3
c
,即c2-30c+200=0,
解得:c=10或c=20,
当c=10时,S=
1
2
bcsinA=
1
2
×10
3
×10×
1
2
=25
3

当c=20时,S=
1
2
bcsinA=
1
2
×10
3
×20×
1
2
=50
3
点评:此题考查了余弦定理,以及三角形的面积公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知 f(x)=ln(3x-1),则 f′(2)=(  )
A、
3
5
B、
1
5
C、ln5
D、3ln5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin(2x-
π
4
)的单调递减区间是(  )
A、[kπ-
8
,kπ+
π
8
](k∈Z)
B、[kπ+
π
8
,kπ+
8
](k∈Z)
C、[kπ-
π
8
,kπ+
8
](k∈Z)
D、[kπ+
8
,kπ+
8
](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

下图是某次考试对一道题评分的算法框图,其中x1,x2,x3为三个评阅人对该题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3等于(  )
A、11B、10C、8D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x2-4x+b=0的一个根的相反数为x2+4x-b=0的根,求x2+bx-4=0的正根.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1过点A(1,
3
2
),离心率为
1
2
,左右焦点分别为F1、F2.过点F1的直线l交椭圆于A、B两点.
(1)求椭圆C的方程.
(2)如果直线l的倾斜角为
4
时,求△F2AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆x2+
y2
4
=1的左、右两个顶点分别为A,B,曲线C是以A,B两点为顶点,焦距为2
5
的双曲线.设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(Ⅰ)求曲线C的方程;
(Ⅱ)设P,T两点的横坐标分别为x1,x2,求证:x1•x2为定值;
(Ⅲ)设△TAB与△POB(其中o为坐标原点)的面积分别为s1与s2,且
PA
PB
≤15,求s12-s22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-2sin2x+a,a∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在无穷数列{an}中,a1=1,对于任意n∈N*,都有an∈N*,an<an+1.设m∈N*,记使得an≤m成立的n最大值为bm
(Ⅰ)设数列为1,3,5,7,…,写出b1,b2,b3的值;
(Ⅱ)若{bn}为等差数列,求出所有可能的数列{an};
(Ⅲ)设ap=q,a1+a2+…+ap=A,求b1+b2+…+bq的值.(用p,q,A表示)

查看答案和解析>>

同步练习册答案