精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系中.直线l的参数方程为$\left\{\begin{array}{l}{x=-5+\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.
(1)写出直线l和曲线C的普通方程;
(2)已知点P为曲线C上的动点,求P到直线l的距离的最大值.

分析 (1)消去参数t得普通方程为y=x+4,根据极坐标公式进行转化即可得C的普通方程.
(2)求出圆的标准方程,利用直线和圆的位置关系进行求解即可.

解答 解:(1)消去参数t得普通方程为y=x+4,
由ρ=4cosθ得ρ2=4ρcosθ,由$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,以及x2+y22,得x2+y2=4x.
(2)由x2+y2=4x得(x-2)2+y2=4得圆心坐标为(2,0),半径R=2,
则圆心到直线的距离d=$\frac{|2-0+4|}{\sqrt{2}}$=3$\sqrt{2}$.
则P到直线l的距离的最大值是3$\sqrt{3}$+2.

点评 本题主要考查参数方程,极坐标方程和普通方程之间的转化,以及直线和圆的位置关系的应用.根据条件转化为普通方程是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若向量$\overrightarrow{BA}$=(1,2),$\overrightarrow{CA}$=(4,5),且$\overrightarrow{CB}$•(λ$\overrightarrow{BA}$+$\overrightarrow{CA}$)=0,则实数λ的值为(  )
A.3B.-$\frac{9}{2}$C.-3D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四式不能化简为$\overrightarrow{AD}$的是(  )
A.$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$B.$(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$C.$\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$D.$\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在R上可导的函数f(x)的图象如图所示,则关于x的不等式x•f′(x)>0的解集为(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:实数x满足${x^2}-2x-8≤C_n^0-C_n^1+C_n^2-C_n^3+…+{(-1)^n}C_n^n$;命题q:实数x满足|x-2|≤m(m>0).
(1)当m=3时,若“p且q”为真,求实数x的取值范围;
(2)若“非p”是“非q”的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,点A,B,D,E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.
(1)证明:$\widehat{DE}$=$\widehat{BD}$;
(2)若DE=2,AD=4,求DF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x-alnx+$\frac{b}{x}$在x=1处取得极值.
(1)求a与b满足的关系式;
(2)若a∈R,求函数f(x)的单调区间;
(3)若a>3,函数g(x)=a2x2+3,若存在m1,m2∈[$\frac{1}{2}$,2],使得|f(m1)-g(m2)|<9成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机事件A,B的对立事件为$\overline{A}$,$\overline{B}$,且P(A)P(B)≠0,则下列说法错误的是(  )
A.若A和B独立,则$\overline{A}$和$\overline{B}$也一定独立B.若P(A)+P($\overline{B}$)=0.2,则P($\overline{A}$)+P(B)=1.8
C.若A和B互斥,则必有P(A|B)=P(B|A)D.若A和B独立,则必有P(A|B)=P(B|A)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,已知$\overrightarrow{CD}=2\overrightarrow{BD}$,若$\overrightarrow{AD}=λ\overrightarrow{AB}+u\overrightarrow{AC}$,λ,u∈R,则λu=-2.

查看答案和解析>>

同步练习册答案