| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 根据已知中函数f(x)为“点距函数”的定义,逐一判断所给定的三个函数,是否满足函数f(x)为“点距函数”的定义,最后综合讨论结果,可得答案.
解答 解:对于①,过A作直线y=-x+2的垂线y=x,
交直线y=-x+2于D(1,1)点,
D(1,1)在y=-x+2的图象上,
故y=-x+2的图象上距离D距离相等的两点B、C,满足B、C到点A的距离相等,
故该函数f(x)为“点距函数”;
对于②,y=$\sqrt{1-{x}^{2}}$表示以(0,0)为圆心以1为半径的半圆,
图象上的任意两点B、C,满足B、C到点A的距离相等,
故该函数f(x)为“点距函数”;
对于③,过A作直线y=x+1的垂线y=-x,
交直线y=x+1于E(-$\frac{1}{2}$,$\frac{1}{2}$)点,
E($-\frac{1}{2}$,$\frac{1}{2}$)在y=x+1的图象上,
故y=x+1的图象上存在两点B、C,满足B、C到点A的距离相等,
故该函数f(x)为“点距函数”;
综上所述,其中“点距函数”的个数是3个,
故选:D
点评 本题考查的知识点是新定义函数f(x)为“点距函数”,正确理解函数f(x)为“点距函数”的概念是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{2}{{e}^{2}}$,0) | B. | [-$\frac{2}{{e}^{2}}$,0)∪{$-\frac{1}{2}$e} | C. | [-$\frac{e}{2}$,0) | D. | [-$\frac{2}{{e}^{2}}$,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | (0,e) | C. | ($\frac{1}{e}$,e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}x±y=0$ | B. | $x±\sqrt{3}y=0$ | C. | $\sqrt{15}x±y=0$ | D. | $x±\sqrt{15}y=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com