【题目】已知椭圆
的焦点坐标分別为
,
,
为椭圆
上一点,满足
且![]()
(1) 求椭圆
的标准方程:
(2) 设直线
与椭圆
交于
两点,点
,若
,求
的取值范围.
【答案】(1)
;(2)![]()
【解析】分析:第一问首先根据题中条件将涉及到的量设出来,之后结合椭圆的定义以及对应的线段的倍数关系,求得对应的边长,利用余弦定理借用余弦值建立边之间的等量关系式,从而求得
的值,借用椭圆中
的关系,求得b的值,从而求得椭圆的方程,第二问将直线的方程与椭圆的方程联立,求得两根和与两根积,从而求得线段的中点,利用条件可得垂直关系,建立等量关系式,借用判别式大于零找到其所满足的不等关系,求得k的取值范围.
详解:(1)由题意设
,
则
,又
,
,![]()
在
中,由余弦定理得,
,
解得
,
,
,
所求椭圆方程为![]()
(2)联立方程
,消去
得
,
则
,
,且
…①
设
的中心为
,则
,
,
,
,即,
,解得
…②
把②代入①得
,整理得
,即![]()
解得![]()
科目:高中数学 来源: 题型:
【题目】为推行“新课堂”教学法,某老师分别用传统教学和“新课堂”两种不同的教学方式在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,若成绩大于70分为“成绩优良”.
(1)由统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
![]()
甲班 | 乙班 | 总计 | |
成绩优良 | |||
成绩不优良 | |||
总计 |
(2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,求抽取的2人中恰有一人来自乙班的概率.
|
|
|
|
|
|
|
|
|
|
附:
,(
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,以原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求圆
的直角坐标方程;
(2)设
,直线
的参数方程是
(
为参数),已知
与圆
交于
两点,且
,求
的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“
或
作品获得一等奖”; 乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”; 丁说:“
作品获得一等奖”.
若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )
A.
作品 B.
作品 C.
作品 D.
作品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在甲地,随着人们生活水平的不断提高,进入电影院看电影逐渐成为老百姓的一种娱乐方式.我们把习惯进入电影院看电影的人简称为“有习惯”的人,否则称为“无习惯的人”.某电影院在甲地随机调查了100位年龄在15岁到75岁的市民,他们的年龄的频数分布和“有习惯”的人数如下表:
![]()
(1)以年龄45岁为分界点,请根据100个样本数据完成下面
列联表,并判断是否有
的把握认为“有习惯”的人与年龄有关;
![]()
(2)已知甲地从15岁到75岁的市民大约有11万人,以频率估计概率,若每张电影票定价为
元
,则在“有习惯”的人中约有
的人会买票看电影(
为常数).已知票价定为30元的某电影,票房达到了 69.3万元.某新影片要上映,电影院若将电影票定价为25元,那么该影片票房估计能达到多少万元?
参考公式:
,其中
.
参考临界值
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国数学家科拉茨
年提出了一个著名的猜想:任给一个正整数
,如果
是偶数,就将它减半(即
);如果
是奇数,则将它乘
加
(即
),不断重复这样的运算,经过有限步后,一定可以得到
.对于科拉茨猜想,目前谁也不能证明,也不能否定.现在请你研究:如果对正整数
(首项)按照上述规则施行变换后的第
项为
(注:
可以多次出现),则
的所有不同值的个数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,
平面
.
![]()
(1)证明:
平面
;
(2)过点
作一平行于平面
的截面,画出该截面,说明理由,并求夹在该截面与平面
之间的几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,侧面
为钝角三角形且垂直于底面
,
,点
是
的中点,
,
,
.
(Ⅰ)求证:平面
平面
;
(Ⅱ)若直线
与底面
所成的角为60°,求二面角
余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com