精英家教网 > 高中数学 > 题目详情
7.“a=-l”是“直线(a-1)x-y-l=0与直线2x-ay+l=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 根据充分条件和必要条件的定义结合直线平行的等价条件进行判断即可.

解答 解:当a=0时,两直线分别分别为-x-y-1=0,2x+1=0,此时两直线不平行,
当a≠0时,若两直线平行,则满足$\frac{a-1}{2}=\frac{-1}{-a}$$≠\frac{-1}{1}$,
由$\frac{a-1}{2}=\frac{-1}{-a}$得a=2或a=-1(舍),
故“a=-l”是“直线(a-1)x-y-l=0与直线2x-ay+l=0平行”的充要条件,
故选:C

点评 本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件求出a的取值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图是正方体的平面展开图,则在这个正方体中,求证:DE∥平面BCM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知⊙O是△ABC的外接圆,直径为2R,试用R与∠A、∠B、∠C的三角比来表示三角形的三条边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一个球的表面积为100π,现用两个平行平面去截这个球面,两个截面圆的半径为r1=4,r2=3.则两截面间的距离为1或7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=λ,an+1=$\frac{2}{{a}_{n}+1}$(n∈N*
(1)若a1>a2,求实数λ的取值范围;
(2)若λ≠-2,记bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$,求数列{bn}的通项公式;
(3)是否存在实数λ,使得数列{an}是递减数列?若存在,求出实数λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.实数x、y满足$\left\{{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}}\right.$,则z=x2+y2+2x-2y的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三个内角分别为A,B,C,若$\overrightarrow{a}$=(cosA,sinA),$\overrightarrow{b}$=(cosB,sinB),且$\overrightarrow{a}$•$\overrightarrow{b}$=1,则△ABC一定是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点A(x,0),B(2x,1),C(2,x),D(6,2x),求实数x的值,使$\overrightarrow{AB}$与$\overrightarrow{CD}$共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,{an}的前n项和为Sn,a1=1,S3=9.
(1)求an与Sn
(2)若数列{bn}为等比数列,且b1=a1,b2=a2,求bn及数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案