精英家教网 > 高中数学 > 题目详情
17.如图是正方体的平面展开图,则在这个正方体中,求证:DE∥平面BCM.

分析 把正方体的平面展开图还原成正方体ABCA-EFMN,由此能求出结果.

解答 解:把正方体的平面展开图还原成正方体ABCA-EFMN,
如图,连接FC.
∵ED∥FC,ED不包含于平面BCM,FC?平面BCM,
∴DE∥平面BCM.

点评 本题考查直线与平面平行的判定及棱柱的结构特征,考查空间想象能力.直线与平面平行的判定定理的实质是:对于平面外的一条直线,只需在平面内找到一条直线和这条直线平行,就可判定这条直线必和这个平面平行.即由线线平行得到线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.集合A={x|0≤x≤2},B={x|x2-x>0},则A∩B=(  )
A.RB.(-∞,0)∪(1,2)C.D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=sinx,x∈[π,2π]的值域是(  )
A.[-1,1]B.[0,1]C.[-1,0]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+b>0,b=4a,(a+b)n的展开式按a的降幂排列,其中第n项与第n+1项相等,求正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的首项a1=$\frac{1}{3}$,前n项和为Sn,若S1、2S2、3S3成等差数列,则{an}的通项为(  )
A.an=$\frac{1}{{3}^{n}}$B.an=3nC.an=$\frac{1}{{3}^{n-1}}$D.an=$\frac{1}{{3}^{1-n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输入N=48,则输出S的值是(  )
A.210B.300C.325D.351

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y-1≥0}\\{x-2y+2≥0}\end{array}}$,则z=x+3y+m的最大值为4,则m的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.给出下列四个命题:
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有$lnx+\frac{1}{lnx}≥2$;
③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3
④若函数$y=f(x-\frac{3}{2})$为R上的奇函数,则函数y=f(x)的图象一定关于点F($\frac{3}{2}$,0)成中心对称.
其中所有正确命题的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=-l”是“直线(a-1)x-y-l=0与直线2x-ay+l=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案