精英家教网 > 高中数学 > 题目详情
5.如图所示为某几何体的三视图,其中正视图和左视图都是腰长为1的等腰直角三角形,该几何体的体积为V1,其外接球的体积为V2,则$\frac{{V}_{2}}{{V}_{1}}$的值为(  )
A.$\sqrt{3}$πB.2$\sqrt{3}$πC.3$\sqrt{3}$πD.$\frac{3\sqrt{3}π}{2}$

分析 如右图,边长为1的正方体中,三视图所示几何体即为三菱锥C1-ABD,利用三棱锥的体积计算公式、球的体积计算公式即可得出.

解答 解:如右图,边长为1的正方体中,
三视图所示几何体即为三菱锥C1-ABD,
V1=${V}_{{C}_{1}-ABD}$=$\frac{1}{3}×\frac{1}{2}×{1}^{2}×1$=$\frac{1}{6}$,V2=$\frac{4π}{3}×(\frac{\sqrt{3}}{2})^{3}$=$\frac{\sqrt{3}}{2}π$,
则$\frac{{V}_{2}}{{V}_{1}}$=3$\sqrt{3}$π.
故选:C.

点评 本题考查了三视图的有关计算、正方体与三棱锥及其球的体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在三棱柱ABC-A1B1C1中,底面边长与侧棱长均等于2,且E为CC1的中点,则点C1到平面AB1E的距离为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=$\frac{π}{2}$,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中点.
(1)求证:AE∥平面PBC;
(2)若直线AE与直线BC所成角等于$\frac{π}{3}$,求二面角D-PB-A平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,直三棱柱ABC-A′B′C′,E,F,G分别是A′C′,BC与B′C′的中点,且AA′=$\sqrt{3}$,BC=2,AC=4.平面ABGE⊥平面BCC′B′.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)求平面ABE与平面EFC′所成角的平面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的不等式ax2+(a-2)x-2≥0,a∈R.
(1)已知不等式的解集为(-∞,-1]∪[2,+∞),求实数a的值;
(2)若不等式ax2+(a-2)x-2≥2x2-3对x∈R恒成立,求实数a的取值范围;
(3)解关于x的不等式ax2+(a-2)x-2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列对应是否是映射,是否是函数.
(1)A=N,B=N*,f:x→y=|x-1|,x∈A,y∈B;
(2)A=R,B={1,2},f:x→y=$\left\{\begin{array}{l}{1(x≥0)}\\{2(x<0)}\end{array}\right.$;
(3)A={平面M内的三角形},B{平面M内的圆},对应法则是“作三角形的外接圆”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的定义域和值域
y=$\frac{1}{2}+$$\frac{1}{{2}^{x}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,x),且$\overrightarrow{a}$⊥$\overrightarrow{b}$.
(Ⅰ)求(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)的值;
(Ⅱ)若m$\overrightarrow{a}$+$\overrightarrow{b}$(m为实数)与$\overrightarrow{a}$-2$\overrightarrow{b}$平行,求|2m$\overrightarrow{a}$+$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下三个命题:
(1)在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好;
(2)随机变量X~N(μ,σ2),当μ一定时,σ越小,其密度函数图象越“矮胖”;
(3)在回归分析中,比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的,模型的拟合效果越好.
其中其命題的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案