精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,四边形A1ABB1为菱形,∠A1AB=45°,四边形BCC1B1为矩形,若AC=5,AB=4,BC=3
(1)求证:AB1⊥面A1BC;
(2)求二面角C-AA1-B的余弦值.
考点:与二面角有关的立体几何综合题
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明AB1⊥面A1BC,只需证明AB1⊥A1B,CB⊥AB1,证明CB⊥平面AA1B1B,利用四边形A1ABB1为菱形可证;
(2)过B作BD⊥AA1于D,连接CD,证明∠CDB就是二面角C-AA1-B的平面角,求出DB,CD,即可求二面角C-AA1-B的余弦值.
解答: (1)证明:在△ABC中AC=5,AB=4,BC=3,
所以∠ABC=90°,即CB⊥AB,
又因为四边形BCC1B1为矩形,所以CB⊥BB1
因为AB∩BB1=B,
所以CB⊥平面AA1B1B,
又因为AB1?平面AA1B1B,
所以CB⊥AB1
又因为四边形A1ABB1为菱形,
所以AB1⊥A1B,
因为CB∩A1B=B
所以AB1⊥面A1BC;
(2)解:过B作BD⊥AA1于D,连接CD
因为CB⊥平面AA1B1B,
所以CB⊥AA1
因为CB∩BD=B,
所以AA1⊥面BCD,
又因为CD?面BCD,
所以AA1⊥CD,
所以,∠CDB就是二面角C-AA1-B的平面角.
在直角△ADB中,AB=4,∠DAB=45°,∠ADB=90°,所以DB=2
2

在直角△CDB中,DB=2
2
,CB=3,所以CD=
17

所以cos∠CDB=
2
2
17
=
2
34
17
点评:本题考查线面垂直的判定,考查面面角,考查学生分析解决问题的能力,正确运用线面垂直的判定,作出面面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,AC,BD相交于点O,PD=
2
AB
,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当E为PB的中点时,求AE与平面PDB所成角的大小;
(3)当PO⊥AE时,求
PE
EB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

8张椅子排成一排,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a,b,c,面积为S,且满足:S•(tan
C
2
+cot
C
2
)=18.
(1)求ab的值;
(2)若c=3
2
,试确定∠C的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆:
y2
a2
+
x2
b2
=1(a>b>0)
,离心率为
2
2
,焦点F1(0,-c),F2(0,c)过F1的直线交椭圆于M,N两点,且△F2MN的周长为4.
(Ⅰ)求椭圆方程;
(Ⅱ) 直线l与y轴交于点P(0,m)(m≠0),与椭圆C交于相异两点A,B且
AP
PB
.若
OA
OB
=4
OP
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,Sn为其前n项和,若S7=7,S15=75,
(1)求数列{an}的首项和公差;
(2)求数列{
Sn
n
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),直线l:y=2x-6,点R是直线l上的一点,动点P满足
RA
=2
AP

(1)求动点P的轨迹方程;
(2)动点P在运动过程中是否经过圆x2+y2+4x+3=0?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列动圆圆心M的轨迹方程:
(1)与圆C:(x+2﹚2+y2=2内切,且过点A(2,0);
(2)与圆C1:x2+﹙y-1﹚2=1和圆C2:x2+﹙y+12)=4都外切.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC的中点.
(1)求证:平面SA∥平面BDE;
(2)平面BDE⊥平面SAC;
(3)求二面角S-AB-C的余弦值.

查看答案和解析>>

同步练习册答案